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Abstract— In this paper, we investigate reliable error rate
estimation techniques for MAC layer adaptive mechanisms. In
particular, we propose and analyze a novel error rate estimator
based on soft output information available as output of receivers
with turbo principle. Contrary to previous works on the subject,
we relax the assumption of perfect knowledge of Signal-Noise-
to-Ratio (SNR) at the receiver, and we analyze the impact of
a SNR estimation error on the error rate estimate. We show
that, differently to previous techniques, the proposed estimation
method is insensitive to such SNR estimation error. Our analytical
and simulation results validate the conclusion.

Index Terms— Soft-output decoding, channel state estimation.

I. INTRODUCTION

New generations of broadband wireless systems employ
advanced coding combined with reliable radio link control
techniques to optimize the use of limited available resources -
bandwidth, power, etc. The concept behind radio link control
techniques, such as Link Adaptation (LA), is to take advantage
of a link as efficiently as possible in given channel conditions
by adjusting certain transmission parameters. This adaptation
relies on performance prediction that is derived from cross-
layer information between the physical and the MAC layers.
Adaptation is not an easy task. In Orthogonal Frequency Di-
vision Multiplexing systems (OFDM), the frequency-selective
channel created by multipath propagation is turned into paral-
lel flat fading channels, where different subcarriers experience
different fading. This fading is often time-varying due to
user and environment mobility. Moreover, the channel may be
subject to time-varying interference. In such context,it is of
high interest to further improve error prediction methods. In
order to guarantee the Quality of Service (QoS) constraints,
adaptive mechanisms implement a suboptimal trade-off be-
tween link robustness and bandwidth efficiency. In [1], we
benchmarked soft-output based error prediction with other
error rate prediction techniques by computing the throughput
performance of an Adaptive Modulation and Coding (AMC)
algorithm with QoS constraints in n existing OFDM system
(IEEE 802.11a). Here in this paper, we detail the theoretical
derivation of these soft-output based error estimators, and
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investigate some properties related to turbo-codes design, such
as interleaver size. Our work is inspired by three interesting
results on decoders with turbo principle [2], [3].

First, it has been shown that a priori information on the
decoded bits can be used to evaluate the error rate faster
than the classic Monte Carlo simulation method [4], [5], [6].
Likewise, in [7] a BER estimator is proposed based on an
estimate of the log likelihood ratios (LLR) distribution. In [8]
the mean and variance of LLR are computed, in order to derive
an ML estimator imposing a symmetry assumption on the LLR
probability distribution. All those BER estimators are derived
by computing the expectation of LLR (or of a function of
it) assuming that the LLR are Gaussian distributed and that
the SNR is known to the decoder. However, experimental data
suggest that these outputs are not Gaussian distributed [9].
There are techniques for BER estimation based on maximum
entropy methods that do not require a Gaussian assumption
[10].

Second, several authors proposed to accelerate the iterative
decoding and reduce the complexity of a receiver with turbo
principle by dynamically controlling the number of decoding
iterations on a packet-by-packet basis through a properly
defined stopping rule. One of the first papers on stopping
criteria is [11], which is based on cross entropy (CE) between
the output distributions of the different decoder modules.
Based on the same CE concept, Shao et al. [12] introduced
two simple methods called sign-change-ratio (SCR) criterion
and hard-decision aided (HDA) criterion. In [13] , extending
the SCR method, a new criterion named sign difference ratio
(SDR) is proposed. It uses the sign differences between a priori
information and extrinsic information. The method presented
by Zhai and Fair in [14], which they called the mean estimate
(ME), is to compare the mean of the output LLRs values
with a pre-defined threshold. In [15] Scavino et al. propose
a novel stopping criterion based on the average entropy of an
information block, which is a measure of the reliability of bit
decisions, for an information block of a given size. More work
on stopping criteria can be found in [16], [17], [18].

Third, recent studies investigate the sensitivity of soft output
decoders (MAP and max-log-MAP) to an SNR estimation
error. In [19] it is shown that while MAP and log-MAP
decoders need a priori knowledge of noise variance to cor-
rectly estimate the a posteriori probability of the decoded bits,
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max-log-MAP decoders are totally insensitive to such error.
However, in it is shown that MAP and log-MAP decoders can
tolerate a significant SNR estimation error without error rate
degradation [20], [21]. Nevertheless, the expectation of LLR
strongly depends on the SNR estimation error also if error rate
is not.

Merging together these three properties of iterative
decoders, we derive a new error rate estimator which is also
based on the LLR distribution, but which does not exhibit
dependence on the SNR estimation errors. We quantify the
impact of SNR estimation error on LLR based estimators by
analytical calculations for uncoded transmission, as well as
by computer simulations for both convolutionally and turbo
coded transmission.

We first introduce essential notations and theoretical back-
ground on soft-output decoding information available at the
output of a receiver with turbo principle in section II. In
section III, we proceed to analytically examine two error rate
estimation methods based on the use of soft outputs in the
case of uncoded BPSK transmission over an AWGN channel.
In section IV, we extend our analytic results to Convolu-
tional/turbo coded transmission for the AWGN channel by
means of numerical simulation. Finally, section V concludes
the paper.

II. THEORETICAL BACKGROUND

BPSK
modulator

0LLR evaluator
xi = ±A

σ2

δ

LLRiyi x̂i = ±A

ni ∼ N (0,σ2)

Fig. 1. Transmission path model.

In systems were a soft output decoder is adopted, the Log
Likelihood Ratio (LLR) probability of the transmitted bits are
available as output of the decoder. Consider the transmission
path of Fig. 1, where xi = ±A is the transmitted symbol, ni

the additive white Gaussian noise of variance σ2 = N0
2 , and

yi the received signal. We assume perfect signal amplitude
estimation at the receiver and, consider a relative estimation
error on σ2 by introducing the scaling factor δ. We indicate
with LLRi the random variable following the distribution (1)
related to the i-th transmitted symbol xi of the packet. If
bits are modulated using a BPSK modulation over an AWGN
channel, the probability distribution of LLRi is given by:

pLLR(LLRi) = p[x = −A]N (−α
δ

,
β2

δ2 )+ p[x = +A]N (
α
δ

,
β2

δ2 )
(1)

where N (m,σ2) denotes the normal distribution of mean

m and variance σ2, and β2 = 2α =
4A2

σ2 . Under the above
hypothesis, the BER of the uncoded transmission (BERuncoded)
equals:

BERuncoded = Q

(
A
σ

)
(2)

with Q(x) = 1√
2π

∫ ∞
x e−

u2
2 du. The BER is indeed univocally

identified by the ratio A/σ = α/β. The parameters α and β
are not obviously estimated from pLLR(LLRi), since the tails
of the two Gaussian distributions overlap. Furthermore, the
statistical moments of the LLR distribution depend on both
A
σ and δ. Moreover, while the statistical moments of the LLR
distribution depend on both A

σ and δ, the BER may not satisfy

BER(
A
σ

,δ) � BER(
A
σ

,1). (3)

III. BER ESTIMATION

In this section we present two error rate estimation methods
derived as function of the statistics of a posteriori LLR at the
receiver output. We analyze the bias of the two estimation
methods in the context of uncoded BPSK or QPSK modulated
symbols transmitted over the AWGN channel, for which
formula (1) holds. We show that the first method, already
known in the literature, depends on SNR uncertainty δ. Then,
we propose a new method, Method 2, insensitive to δ.

A. Method 1

A simple BER estimator can be directly obtained at each
decoded packet using the A Posteriori Probabilities (APP)
available after Soft Output decoding of the received packet.
Considering the transmission path of figure 1, let N be the
packet length, denoting with APPi(+A) and APPi(−A) the A
Posteriori Probabilities of the i-th transmitted symbol xi of the
packet then, a BER estimator can be formalized as follows:

ˆBER1 =
1
N
·

N

∑
i=1

min(APPi(−A),APPi(+A)) (4)

In [4], [5] the equivalent BER estimator was proposed to
accelerate the Monte Carlo simulation:

ˆBER1 =
1
N
·

N

∑
i=1

1
1+ e

LLRi
 (5)

Where formula (4) and (5) are two expression of the same
equation since:

APP(+A) =
1

1+ e−LLR

and
APP(−A) =

1
1+ eLLR

We compute the E[ ˆBER1] (where ˆBER1 is given by formula
(5)) for an uncoded BPSK or QPSK modulation in order
to study the bias of the estimator. Contrary to prior art
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we consider the presence of an estimation error δ on the
channel noise variance. For simplification, we provide the
demonstration only for a BPSK modulation:

E[ ˆBER1]

= E[
1

1+ e
LLR

 ] =
∫ +∞

−∞

1
1+ e

t · pLLR(t)dt

=
1
2
·



∫ 0

−∞

1
1+ e−t ·N (

α
δ

,
β2

δ2 )dt︸ ︷︷ ︸
BER−I2

+
∫ ∞

0

1
1+ et ·N (

−α
δ

,
β2

δ2 )dt︸ ︷︷ ︸
BER−I2

+
∫ 0

−∞

1
1+ e−t ·N (

−α
δ

,
β2

δ2 )dt︸ ︷︷ ︸
I1

+
∫ ∞

0

1
1+ et ·N (

α
δ

,
β2

δ2 )dt︸ ︷︷ ︸
I1




= BER+ I1 − I2 (6)

where:

I1 =
∫ ∞

0

1
1+ et ·

δ
β ·√2π

· e
− (t− α

δ )2

2 β2

δ2 dt

and

I2 =
∫ ∞

0

et

1+ et ·
δ

β ·√2π
· e

− (t+ α
δ )2

2 β2

δ2 dt

Finally, the bias of the estimator can be expressed as:

I1 − I2 =
δ

β ·√2π
·
∫ ∞

0

e
− (t2δ2+α2)

2β2

1+ et ·
[
e

δt
2 − e(1− δ

2 )t
]
·dt

then, I1 − I2 ≥ 0 if t(δ−1) ≥ 0. Indeed, since t ∈ [0,+∞] :


1 > δ > 0 =⇒ I1 − I2 < 0 =⇒ ˆBER1 < BER
δ = 1 =⇒ I1 − I2 = 0 =⇒ ˆBER1 = BER
δ > 1 =⇒ I1 − I2 > 0 =⇒ ˆBER1 > BER

(7)

Hence, from conditions (7) we evict that if SNR is overes-
timated, BER is underestimated and vice versa, if SNR is
underestimated, BER is overestimated. Consequently, ˆBER1

is unbiased for uncoded BPSK or QPSK modulations only
if δ = 1. Simulation results (see section IV) will extend the
validity of this result for both convolutionally and turbo coded
case.

B. Method 2

From formula (2) we know that the BER of uncoded BPSK
transmitted symbols is univocally determined by the ratio α/β,
that is the mean to standard deviation ratio. From formula (3)
we infer that under certain conditions 1 also the BER after
decoding is insensitive to such noise variance estimation error.
As consequence it should exist a class of error rate estimators
that should be totally insensitive to δ and we aim to find one
method of this class. We showed in section III-A how the error
estimation method defined by equation (5) is biased with δ.

1when the decoder is a MAP or a log-MAP formula (3) holds if δ∈ [−2,+6]
dB [20], [21], otherwise if the decoder is a max-log-MAP formula (3) holds
∀δ [19].

This is due to the fact that in (5) we try to estimate the error
rate computing a function of the mean of the LLRi, while such
mean varies with δ.

Assuming that the LLR distribution after decoding are ap-
proximately Gaussian 2, the BER of coded BPSK transmitted
symbols should be univocally determined by the ratio α/β
of the decoder output LLR distribution. Unfortunately α/β
after decoding is unknown. We propose to estimate α/β by
computing the mean to standard deviation ratio of

LLRi
 at

the output of the decoder with turbo principle. In the following
we will call this ratio Λ. Considering the same transmission
path of section III-A, Λ can be computed at each packet
observation computing the mean and standard deviation ofLLR

 from the observation of the LLRi:

Λ =
E[
LLR

]√
E[(
LLR

−E[
LLR

])2]
(8)

Actually, mean and standard deviation of
LLR

 over the
N observed symbols can be computed either directly or by
first computing a histogram of the LLR observed values. The
second approach results typically in a smoother estimation,
and it may return better results for the estimation of mean
and standard deviation, but this is not the scope of this
section. Moreover, for small values of BER, the impact of the
overlapping of the two normal distributions in (1) becomes
negligible, and we have Λ ≈ α

β . Such a situation corresponds
to a typical operational context since the target BER of an
adaptive mechanism is often below 10−4.

Then, the proposed estimator is defined as:

ˆBER2 = h(Λ) (9)

where h(Λ) is a bijective function that univocally links the
BER to Λ defined by equation (8). For uncoded BPSK modula-
tion transmitted over an AWGN channel, the LLR distribution
is provided in (1) and (8) and can be expressed as follows
(algebraic manipulations are omitted):

Λ =

√
2 ·
(
− 1

2 +Q
(

α
β

)
− 1√

2π· α
β
· e− 1

2 ·( α
β )2
)

√√√√( 1+
(

β
α

)2

2

)
−2 ·

(
− 1

2 +Q
(

α
β

)
− 1√

2π· α
β
· e− 1

2 ·( α
β )2
)2

(10)
Studying the expression (10) we infer that Λ is monotonically
decreasing depending only on the ratio α

β at a given modula-

tion and coding scheme. Consequently, so does ˆBER2, being
independent from δ. The function h(Λ) can be implemented
by means of a Look Up Table (LUT) which can be easily
obtained analytically since both Λ and BER are functions of
the same ratio α

β . The LUT of (9) can be easily computed

from (10), since α
β = A

σ and BER = Q
(

A
σ
)
.

2It was observed in [22] that the pdf of the LLRi after decoding is nearly
Gaussian
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IV. SIMULATION RESULTS

In this section the two BER estimation methods (5) and
(8) are compared in terms of ˆBER versus Eb

N0 in the AWGN
context. The transmission path is illustrated on Fig. 1. Results
for uncoded transmission are reported on Fig. 2, on Fig. 3 for
Convolutionally-coded transmission and on Fig. 4 and 5 for
Turbo-Coded transmission in the AWGN. We verify that both
methods are robust against code parameters but we present
here simulation results only for the following code design.

For uncoded transmission the probability distribution of the
LLR at the output of the APP computer is given by (1).
Therefore, in section III we derived mathematically the bias
for Method 1 and the analytical expression of Λ (equation
(10)).

On Fig. 2, when δ = 1 (i.e., perfect knowledge of the
channel noise variance at the receiver), both methods return
an unbiased estimation of BER. On the contrary, when δ 	= 1,
only Method 2 is unbiased. Method 1 over-estimates the BER
for δ > 1 and under-estimates it for 0 < δ < 1, as predicted by
(7).

0 1 2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0 dB

curve 1: BER (analytic)
curve 2: BER estimate method 1  δ=  0 dB
curve 3: BER estimate method 2  δ=  0 dB
curve 4: BER estimate method 1  δ=  2 dB
curve 5: BER estimate method 2  δ=  2 dB
curve 6: BER estimate method 1  δ=−2 dB
curve 7: BER estimate method 2  δ=−2 dB

Fig. 2. Uncoded transmission: comparison of Method 1 and Method 2 with
δ= 0 dB and ±2 dB. Curves 1,2 3,5,7 are identical

Since in case of coded transmission a mathematical ex-
pression for the probability distribution of the LLR at the
output of the Soft Output decoder is unknown, in Fig. 3
the two estimators are compared by means of Monte Carlo
simulation in the case of Convolutionally-coded transmission.
The error-correcting code is the classical rate 1/2 64-state
(133,171)8 Convolutional code as defined in the IEEE 802.11
standard and the decoder is a log-MAP). We observe the same
behavior as for uncoded transmission. For a given value of
BER, Method 1 presents an over-estimation of 0.5 dB in terms
of Eb

N0 when δ = 2dB and less than 0.5 dB of under-estimation
when δ = −2dB.

Since soft output decoding is usually employed in receiver
with turbo principle we analyze hereafter the performance

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

 1  2  3  4  5  6

B
E

R

Es/N0 (dB)

   curve 1: BER                                   
  curve 2: BER Method 1 with δ=0 dB
  curve 3: BER Method 1 with δ=2 dB
curve 4: BER Method 1 with δ=-2 dB
  curve 5: BER Method 2 with δ=0 dB
  curve 6: BER Method 2 with δ=2 dB
curve 7: BER Method 2 with δ=-2 dB

Fig. 3. Convolutionally-coded transmission: comparison of Method 1 and
Method 2 with δ= 0 dB and ±2 dB. Curves 1,2,5,6,7 are identical.

of the two BER estimation methods for turbo receivers. We
first compare them when δ = 0dB. In Method 1, equation (5)
requires the output LLRi values at the last decoding iteration.
Nevertheless, while the extrinsic information exchanged be-
tween the two constituent Convolutional codes are assumed to
be independent in Method 1, so it is only if the interleaver
size is infinite. In practice the interleaver is of finite size.
In such a case, Method 1 underestimates the BER due to
the optimistic LLRi values assumed by the estimator. The
smaller the interleaver size is, the more this phenomenon is
remarkable.

In Fig. 4 a rate 1/3 Turbo code with 4-state RSC(7,5)
constituents is considered. Under perfect knowledge of the
SNR, the performance of Method 1 have been analyzed for
interleaver sizes of 1024, 4096 and 16000. The simulation
results confirm that Method 1 applied to the turbo principle
is biased also for δ = 0dB and that the experienced bias fades
with increasing interleaver size.
In Method 2 the bias presented by Method 1 when the
information block size is finite can be directly avoided defining
the LUT.

In Fig. 5 a rate 1/3 Turbo code with 4-state RSC(7,5)
constituents is decoded with a max-log-MAP decoder. The
information block length is 1024, the number of decoding
iterations is limited to 12 and δ = { 0 dB, -2 dB, -3 dB}. Our
numerical results show how, when δ = 0 only Method 2 returns
an unbiased estimation of BER albeit the finite interleaver size.
Moreover, when δ 	= 0, while Method 1 present a greater bias,
Method 2 is still unbiased. Note that our proposed method can
be applied to the coded case for which the LLR distribution is
not exactly Gaussian, since it only requires function h(Λ) in
equation (9) to be bijective. This assumption is confirmed by
simulation for convolutionally and turbo coded transmission
in which the LUT h(Λ) is obtained by simulation.
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curve 1:                 BER, interleaver size 1024
curve 2: BER method 1, interleaver size 1024
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Fig. 4. Turbo coded transmission: Method 1 with δ= 0 dB.
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 curve 1: BER                                    
 curve 2: BER Method 1 with δ=0 dB

 curve 3: BER Method 1 with δ=-2 dB
 curve 4: BER Method 1 with δ=-3 dB
 curve 5: BER Method 2 with δ=0 dB

 curve 6: BER Method 2 with δ=-2 dB
 curve 7: BER Method 2 with δ=-3 dB

Fig. 5. Turbo coded transmission: comparison of Method 1 and Method 2
with δ= 0,-2,-3 dB. Curves 1,5,6,7 are identical.

V. CONCLUSIONS

In this paper we use soft output decoding information to
derive a reliable error rate estimation method for trellis coded
symbols transmission over AWGN channel. Then, considering
antipodal uncoded AWGN symbol transmission, we show
analytically that while method 1 is unbiased only if SNR
is correctly estimated, the proposed method 2 is independent
from a SNR estimation error. We confirm these results by
simulation for convolutionally/turbo coded transmission in the
AWGN channel in both cases of perfect and mismatched noise
variance SNR estimation. Contrary to previous techniques,
the proposed method is independent from both noise variance
estimation error and finite information block length.

REFERENCES

[1] E. Calvanese Strinati and S. Simoens and J. Boutros, ”New Error
Prediction Techniques for Turbo-Coded OFDM Systems and Impact

on Adaptive Modulation and Coding,” IEEE International Symposium
on Personal, Indoor, and Mobile Radio Communications , Berlin,
September 2005.

[2] L. Bahl and J. Cocke and F. Jelinek and J. Raviv, ”Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,” IEEE Transactions
on Information Theory, vol. 20, pp. 284-287, March 1974.

[3] C. Berrou and A. Glavieux and P. Thitimajshima, ”Near Shannon limits
error-correcting coding and decoding: turbo-codes,” IEEE Information
conference on Communication, pp. 1064-1700, May 1993.

[4] H.A. Loeliger, ”A posteriori probabilities and performance evaluation
of trellis codes,” IEEE International Symposium on Information Theory,
Trondheim, June 1994.

[5] I. Land and P.A. Hoeher, ”Log-Likelihood values and Monte Carlo
simulation - some fundamental results ,” International Symposium on
on Turbo Codes & Related Topics, Brest, September 2000.

[6] I. Land and P.A. Hoeher, ”New results on Monte Carlo bit error
simulation based on the a posteriori log-likelihood ratio,” International
Symposium on on Turbo Codes & Related Topics, Brest, September
2003.

[7] FITNESS, ”Performance analysis of re-configurable MTMR transceivers
for WLAN,” http://www.ist-fitness.org/, 2002.

[8] N. Letzepis and A. Grant, ”Bit error rate estimation for turbo decoding,”
Australian Communications Theory Workshop, Melbourne, February
2003.

[9] N. Letzepis and A. Grant ”Non-Gaussian Behaviour of Extrinsic
Log-Values,” IEEE International Symposium on Information Theory,
Chicago, June 2004.

[10] A. Abedi , ”Invariance Properties and Performance Evaluation of Bit
Decoding Algorithms,” PhD thesis, University of Waterloo, Ontario,
Canada, 2004.

[11] J. Hagenauer and E. Offer and L. Papke, ”Iterative Decoding of Binary
Block and Convolutional Codes,” IEEE Transaction on Information
Theory, vol. 42, pp. 429-445, March 1996.

[12] R.Y. Shao and S. Lin and M.P.C. Fossorier, ”Two Simple stopping
criteria for turbo decoding,” IEEE Transaction on Communications, vol.
47, pp. 117-120, August 1999.

[13] Y. Wu and B. D. Woerner and W.J. Ebel, ”A simple stopping criterion
for turbo decoding,” IEEE Communication Letters, Vol. 46, pp 421-423,
August 2000.

[14] F. Zhai and I.J. Fair, ”New error detection techniques and stopping
criteria for turbo decoding,” Canadian Conference on Electrical and
Computer Engineering, pages 701-702, May 2000.

[15] B. Scanavino and G.M. Maggio, ” A novel stopping criterion for turbo
codes based on the average a posteriori entropy,” In IEEE GLOBECOM
conference, vol. 4, pp 2051-2055, December 2003.

[16] J. Heo and K. Chung and K. M. Chugg, ”Simple stopping criterion for
min-sum iterative decoding algorithm,” IEEE Electronics Letters, vol.
37, pp. 1530-1531, December 2001.

[17] T. M. N. Ngatched and F. Takawira. ”Simple stopping criterion for turbo
decoding,” IEEE Electronics Letters, vol. 37, pp. 1350-1351, October
2001.

[18] N. Y. Yu and M. G. Kim and Y. S. Kim and S. U. Chung, ”Efficient stop-
ping criterion for iterative decoding of turbo codes,” IEEE Electronics
Letters, vol. 37, pp. 73-75, January 2003.

[19] A. Worm and P. Hoeher, ”Turbo-decoding without SNR estimation ,”
IEEE Communications Letters, pp 193-195, June 2000.

[20] Todd A. Summer and Stephen G. Wilson, ”SNR Mismatch and Online
Estimation in Turbo Decoding ,” IEEE Transactions on Communica-
tions,Vol. 46, pp 421-423, April 1998.

[21] Wangrok Oh and Kyungwhoon Cheun, ”Adaptive Channel SNR Esti-
mation Algorithm for Turbo Decoder ,” IEEE Communications Letters,
Vol. 4, pp 255-257, August 2000.

[22] H. El Gamal, A.R. Hammons Jr., “Analyzing the turbo decoder using
the Gaussian approximation,” IEEE Transaction on Information Theory,
vol. 47, no. 2, February 2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

76


