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Abstract—This paper addresses the problem of source and relay
transmit covariance optimization on the Gaussian MIMO relay
channel with full channel state information (CSI), i.e., assuming
perfect knowledge of all channels. For full-duplex relaying, we
show that the cut-set bound on capacity can be computed as the
solution of a convex problem, thus providing a tighter bound than
previously published. For time division duplex (TDD) relaying,
both upper and lower bounds on capacity are derived, and the
transmit covariance matrices are optimized for decode-and-for-
ward (DF) strategies with either partial or full decoding at the
relay. A generic procedure is introduced to formulate these prob-
lems into a standard convex form, and to solve them efficiently.
Suboptimum precoders are also proposed which have a specific
matrix structure that either leads to a closed-form expression or at
least reduces the dimension of the optimization problem. Practical
aspects related to transmit power constraints and CSI availability
are then discussed. Finally, simulations in a cellular downlink
scenario show that the partial DF strategy can achieve a rate very
close to capacity for realistic values of the source to relay SNR, and
that the rate loss due to suboptimum precoder structures remains
small for typical antenna configurations.

Index Terms—Cooperative, relay, channel state information
(CSI), MIMO.

I. INTRODUCTION

A LTHOUGH capacity bounds for the relay channel have
been available for years [1], the research activity in this

domain is still thriving. This interest is supported by the re-
cent standardization activities in, e.g., the IEEE802.16 j and
m Task Groups [2], where cooperative [3] relaying strategies
are proposed. Some promising research topics include the mul-
tiple-relay channel (e.g., [4]), the two-way relay channel [5], [6]
and the multiuser relay channel (e.g., [7]). Moreover, it is now
possible to integrate multiple antennas not only in infrastruc-
ture devices (e.g., base stations, fixed relay stations) but also in
mobile devices (e.g., handsets), and to exploit MIMO channel
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state information (CSI) not only at the receiving node (CSIR)
but also at the transmitting node (CSIT). Point-to-point MIMO
with full1 CSI is now a well investigated topic: the transmit co-
variance that attains the Gaussian MIMO channel capacity is de-
rived by Telatar in [8], while the maximization of various other
cost functions is performed in [9]. However, several aspects of
the MIMO relay channel with full CSI are still unsolved even for
the one-way single relay channel and this is the domain in which
our paper aims at contributing. We therefore consider a single
Relay (R) which cooperates with a Source (S) and a Destination
(D) to maximize the information rate from S to D. The number
of antennas at S, R and D are respectively denoted and

and each can be greater than 1.
In [1], the capacity of the full-duplex single-antenna single-

relay channel is studied: the DF (Theorem 1) and compress-
and-forward (CF, Theorem 6) coding strategies are introduced
and an upper-bound on the relay channel capacity, known as the
cut-set bound (CSB) is provided. With DF, the relay decodes at
least a part of the message transmitted by the source, whereas
with CF the relay observation is compressed and forwarded to
the destination as a new codeword. Neither DF nor CF is ca-
pacity-achieving in the general relay channel. However, DF (re-
spectively, CF) meets the CSB and becomes capacity-achieving
when the capacity of the S-R link (respectively, the R-D link)
gets infinitely large (see, e.g., [7]). In this paper full-duplex re-
laying is only briefly addressed and more focus is put on half-du-
plex relaying, which lends itself more easily to practical imple-
mentation by preventing the transmit chain of the relay terminal
to interfere with its receive chain. We consider a time division
duplex (TDD) 2 protocol with a relay-receive slot of duration
denoted by followed by a relay-transmit slot of dura-
tion . Using the same conventions as [11] we assume a
“fixed-dynamic” TDD protocol, i.e., is not random but can be
optimized for a given channel realization.

In [12], the CSB and the achievable rates of partial DF and CF
strategies are expressed in the case of Gaussian TDD relaying,
assuming single antenna devices. In [13], an upper-bound and
several lower bounds are derived for the full-duplex MIMO
relay channel with full CSI. As explained in Section II of this
paper the upper-bound in [13] is in general larger than the CSB.
Two achievable rates are also derived in [13]. The first rate
(Theorem 3.2) is simply the minimum between the capacity
of the source-destination point-to-point MIMO channel and
that of a cascaded channel in which the destination treats

1In this paper, full CSI refers to the assumption that perfect knowledge of all
channels is available at each node.

2Note that frequency division duplex (FDD) relaying as proposed in, e.g., [10]
also assumes that the transmissions from S to R and from R to D take place in
different time slots.
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the signal received from the source as noise. The second
achievable rate (derived in the Appendix of [13]) corresponds
to a Block-Markov coding strategy (see, e.g., [7]). As the
authors point out, it is expected to yield a tighter bound than
Theorem 3.2. The problem of maximizing the rate w.r.t. the
source and relay transmit covariance matrices for this strategy
is formulated but not solved since only suboptimum transmit
covariance matrices are proposed. In [14], two strategies for
the full-duplex MIMO relay channel are introduced based on
either superposition coding or dirty paper coding at the source
and both are proven to achieve a higher rate than [13, Theorem
3.2]. However, once again the achievable rate maximization
problem is formulated but not solved for the general case. In
[11] and [15], a Diversity Multiplexing Tradeoff analysis of the
full and half duplex MIMO relay channel is carried on. In [16],
[17], Source and Relay precoders are derived for linear relaying
(LR) with full MIMO CSI. Although LR—which generalizes
amplify-and-forward—is interesting thanks to its processing
simplicity, it presents the drawback in single-relay TDD case
that the time-sharing is constrained to , which severely
limits the achievable rate, therefore LR will not be considered
in the following.

The present paper contributes to the study of MIMO relaying
with full CSI as follows:

• The CSB is formulated as a convex optimization problem
for both full-duplex and TDD relaying. In the full-duplex
case, this upper-bound on capacity is tighter than the one
proposed in [13]. In the TDD case, the formulation is ob-
tained by exploiting the convexity-preserving property of
perspective function [18] (Section II-A).

• A convex formulation of the achievable rates maximization
problem is obtained for DF strategies with either partial or
full decoding at the relay for TDD relaying (Section III).

• Two generic procedures are proposed to efficiently solve
the above problems and compute the upper and lower
bounds. For this purpose, several tools are exploited from
optimization theory (e.g., duality, epigraph [18]), opti-
mization algorithms (e.g., gradient projection [19], barrier
method [18], [19]) and differentiation techniques (e.g.,
patterned matrix derivatives [21], [22]). (Section II-B).

• Suboptimum source and relay precoder structures are pro-
posed for the DF strategy with full decoding. In this case,
either analytical expressions can be derived from KKT
conditions (Section III-B–1) or at least the problem dimen-
sions can be reduced. (Section III-B–2).

• The extension of the optimization procedures to handle
more realistic constraints such as multicarrier trans-
mission and per-antenna power constraint is discussed
(Section III-C) and the upper and lower bounds are finally
benchmarked by simulations in a cellular downlink sce-
nario (Section IV).

Note that parts of this work were published in [23]. The present
paper extends [23] on many aspects, including the convex for-
mulation in TDD case, the use of patterned derivatives, a dis-
cussion on implementation constraints and additional simula-
tion results.

Notation. We use boldface capital font for matrices and bold-
face lower-case for column vectors. Given a scalar we

denote and its component-wise exten-
sion to vectors . denotes the component-wise com-
plex-conjugate operator, is the transpose and the Her-
mitian transpose. The notation stands for the operator
that stacks the columns of a matrix into a column vector. Like-
wise, denotes the matrix obtained from
an vector such that . The diag-
onal matrix whose diagonal terms are given by vector is de-
noted . The identity matrix of size is denoted

and the null matrix is denoted . As in [18], the cone
of Positive semidefinite (PSD) matrices of size is de-
noted by and the set of positive (respectively, strictly pos-
itive) real numbers is (respectively, ). We write
for a PSD matrix and for a vector with components in

. The mutual information between vectors and is written
. Given a complex matrix of size and a com-

plex PSD matrix , the following quantity is defined:
. For a given , the function

is concave on .

II. THE CUT-SET BOUND WITH FULL MIMO CSI

In this section, we show that the computation of the CSB can
be formulated as a convex optimization problem in the full-du-
plex and TDD relaying cases. Procedures to solve this problem
are then proposed. These procedures will be directly applicable
to DF coding strategies in Section III.

A. Formulating the CSB as a Convex Problem

1) Full-Duplex Relaying Case: In this paper the channels
from S to D, S to R and R to D are all assumed static and are de-
noted, respectively and . As stated earlier, full CSI
is assumed. Moreover, unless explicitly stated otherwise, each
node is subject to a maximum transmit power constraint, de-
noted by and for the source and relay respectively. The
CSI and power assumptions will be discussed in more details
in Section III-C. In full-duplex MIMO relaying, the signals re-
ceived at the relay and destination can be written as in [13]

(1)

where circularly symmetric complex white Gaussian noise of
unit variance is assumed3 at the relay and destination, i.e.,

and . The capacity of the
full-duplex relay channel is upper-bounded by the cut-set bound

whose expression is given by [13, eq. (3)]

(2)

where the maximization is performed over the joint distribution
of the source and relay codebooks . The authors in
[13] show that the optimum is Gaussian and conclude

3Note that correlated noise of covariance � and � can be modeled by re-
placing� �� and� by respectively, �� � � �

�� � �

and �� � � in all the equations of this paper.
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that the optimization of (2) must be carried on w.r.t. three ma-
trices and the cross correla-
tion . This optimization seems highly nontrivial and
nonconvex. Therefore, the authors exploit matrix inequalities
and introduce a scalar parameter that captures the cross cor-
relation. They finally obtain (see [13, Theorem 3.1]) an upper-
bound which involves a maximization only over , and

(3)

Although its derivation is very elegant, this bound unfortunately
suffers several restrictions: It is in the general case strictly
larger than the CSB (e.g., equality with the CSB requires

) ii) Although and are concave in and for
a fixed , the problem is not convex in and thus
the proposed algorithm in [13] includes a nonconvex one-di-
mensional optimization over . iii) Its numerical evaluation is
computationally intensive. Indeed, it is not possible to obtain a
closed-form expression for the partial derivatives of w.r.t.

and . We therefore have to resort to numerical differen-
tiation with respect to each component of these two matrices,
which requires a number of evaluations of that is propor-
tional to (respectively, ), and each evaluation of re-
quires by definition to solve an optimization problem.

The aforementioned limitations can be overcome by consid-
ering the joint covariance matrix:

(4)

Let also define the following matrices:

(5)

From (4) and (5), the following relationships hold:

(6)

Note that if is PSD, then and are PSD too

(7)

Indeed, for any two vectors and , defining
and , the following holds:

(8)

where (a) comes from (6) and (b) from the positive semidefi-
niteness of .

The cut-set bound (2) can, therefore, be expressed as

(9)

The objective is concave on the PSD cone, because it is the
pointwise minimum of two concave functions [18]. The con-
straints are affine. Therefore, the problem is convex. Thus, any
locally optimal point is globally optimal and we can rely on the
convex optimization literature [18], [19] to solve the problem
efficiently.

2) TDD Relaying Case: As in [20] we can define three TDD
relaying protocols. In Protocol I, S transmits to both R and D
during the first slot. Then during the second slot both S and R
transmit to D. Protocol II is a variant of Protocol I in which only
the Relay transmits during the second slot. Protocol III is also
a variant of Protocol I in which D only receives signals trans-
mitted during the second slot. In this section we consider the
more general and more complex Protocol I, from which Proto-
cols II and III can be easily derived. The CSB can be expressed
as follows (see [12, eq. (77)]):

(10)

where the superscript indicates the slot during which the
signal was transmitted or received. Using similar arguments as
in the full-duplex case, the cut-set bound for the TDD MIMO
relay channel can be expressed as

(11)

Equation (11) is convex in for a given , but con-
vexity in cannot be claimed at this stage. How-
ever, let us introduce the following changes of variables into
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(11): and .
The problem now reads

(12)

where the trivial cases and were excluded from
the domain. The function defined on

is the perspective (cf. [18, Sec. 3.2.6]) of the function
which is concave on , therefore, is

concave on . Equation (12) is, therefore, convex in
standard form.

B. Computing the Cut-Set Bound

The previous section has shown that the CSB can be ex-
pressed as the solution of a convex problem in the full-duplex
and TDD cases. Since it does not seem possible to derive a
closed-form expression of the solution of (9) and (12), efficient
procedures are sought hereafter to solve them numerically. For
this purpose, the convex optimization literature is exploited. We
focus on solving (12) from which the solution of the simpler
problem (9) will be straightforward.

We start by writing the equivalent epigraph [18] form of (12)
such that closed-form expressions of partial derivatives can be
found for the objective and the constraints

(13)

where

(14)

The optimization problem in (13) needs to be carried on with
respect to three real-valued variables and two PSD matrices. In
[22], a framework is presented for computing the derivatives
of functions of complex-valued matrices which are patterned,
i.e., which have a special structure (e.g., Toeplitz, Hermitian).
In our problem, the Hermitian-symmetric structure of matrices

and is exploited. The computation of closed-form
expressions for the partial derivatives and gradients involved in
this paper is detailed in the Appendix. Following (60), let define
the following parameterization of matrices and

(15)

(16)

In order to simplify the notations, all the variables in the problem
are stacked into the following vector:

(17)

and the set is defined such that

(18)

Moreover, the inequality constraints in (13) are denoted as
and stacked into a vector-valued

function as follows:

(19)

Using the notations (17)–(19) and the gradient expressions of
the Appendix, two alternative ways of solving (13) are now
presented.

1) Dual Method: A first method to compute the cut-set bound
consists in solving the dual problem

(20)

where denotes the Lagrangian and is the dual
function. If the problem is strongly dual (see [18, Sec. 5.2.3])
then there is no duality gap and solving (20) yields the cut-set
bound. In order to prove strong duality, we show that Slater’s
condition holds. Let denote by (respectively, ) the subset of

(respectively, ) over which all the constraints are inactive,
i.e., . This set is called the interior
set of (respectively, ) and Slater’s condition is satisfied if

(respectively, ) is nonempty. Note that for instance the fol-
lowing point is strictly feasible:

(21)

Therefore, Slater’s condition is satisfied and strong duality
holds. The computation of the dual function at a given

requires to minimize the Lagrangian over .
The gradient of the Lagrangian can be computed
in closed-form as described in the Appendix. However, a
straightforward application of gradient descent methods cannot
guarantee that the sequence of points belong to . We there-
fore resort to the gradient projection method (GPM) which is
described in [19, Sec. 2.3]. The GPM is an iterative algorithm
which computes at step the following points:

(22)

(23)

where is a positive scalar, is the step size and
denotes the projection on the set . The GPM is selected

here because the projection operator turns out to be simple. The
projection of and onto can be practically handled by
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restricting their domain to a closed interval where
. In this case their projections are, respectively, and

. By selecting a small enough , the error introduced
on the final solution can be made arbitrarily small. Finally, a
projection from the set of Hermitian matrices onto the PSD cone
is needed. Let consider the eigenvalue decomposition of an

Hermitian matrix: . The projection of
onto is [24]

(24)

There exist various methods to select parameters and
in order to ensure convergence. In our simulations we used the
Armijo Rule along the feasible direction ([19, Sec. 2.3]).

The previous paragraph presented a procedure to compute the
dual function by minimizing the Lagrangian. In order to solve
the dual problem (20), it remains to maximize the dual function
with respect to . From (20), the dual function may not be dif-
ferentiable. However, as shown below, a closed-form expression
of a subgradient can be found (see also [19, Sec. 6.3 ]). Since
the dual function is concave in , a vector is a subgradient of

at if for all

(25)

Let and be minimizers of the Lagrangian at, respectively,
and . Then

(26)

From (26) and (25) it can be concluded that is a sub-
gradient of at , and the dual can be solved by subgradient
methods. The subgradient method generates a sequence of dual-
feasible points according to the following iteration:

(27)

where is the subgradient, is a positive scalar step size and
is the projection on the set of dual-feasible points. We

refer the reader to [19, Sec. 6.3] in which several step size se-
lection strategies are proposed and in particular to Proposition
6.3.1 which states that for sufficiently small step size, the dis-
tance to the optimum is reduced at each iteration.

2) Barrier Method: The previous paragraph described a
procedure that computes the cut-set bound by solving the dual
problem. An alternate approach is to solve the primal problem
using an interior-point algorithm. The barrier method (see [18,
Sec. 11.3.1.]) is the selected algorithm in this paragraph. Given
two fixed real parameters and , the barrier method
is an iterative procedure which solves at the th iteration the
following unconstrained minimization problem:

(28)

(29)

where and . The function is
the logarithmic barrier associated to the th inequality con-
straint. This function tends to when . The
expression of barrier functions is straightforward for the con-
straints and . Moreover, as pointed out in [25,
Theorem 5.1], is a barrier function for the positive
definiteness constraint . Therefore, the minimization of
(28) can be carried on without the need for any projection as
long as the descent starts from an initial point in . For
instance the point in (21) is a possible starting point. In our
simulations we used a steepest descent with backtracking line
search [18] to provide the step size. For sufficiently small step
size, the candidate next point is guaranteed to lie within the
interior set.

The two procedures presented above are expected to pro-
vide an efficient numerical computation of the cut-set bound in
the full-duplex and TDD cases. Unfortunately, it is not easy to
assess their complexity for a given accuracy. For instance, as
stated in [19, Sec. 6.3], step size selection rules are empirical.
When maximizing the dual function in (27), we applied the step
size updating rule of [19, eq. (6.28)]

(30)

where with a fixed positive in-
teger and is an upper-bound on the optimum dual. Any
primal-feasible point obtained when minimizing the La-
grangian at previous iterations gives an upper-bound ,
but not all such points are primal-feasible and therefore may
be updated infrequently. As a result we observed that in our
simulations solving the primal problem with an interior point
method was more computationally efficient than solving the
dual problem.

Having addressed the computation of the cut-set bound in this
section, we will now investigate in the next section the problem
of precoder and resource allocation optimization for specific
coding strategies.

III. DECODE-AND-FORWARD (DF) WITH FULL MIMO CSI

This section focuses on DF relaying strategies for the TDD
MIMO relay channel. The partial DF coding strategy is ad-
dressed in Section III-A before considering simpler coding and
optimization strategies in Section III-B.

A. Partial DF

In partial DF relaying [12], S transmits a first message at
a rate using a signal during the first slot. The relay
(R) transmits during the second slot while S transmits

. This strategy is called
partial DF because R only decodes the part of the message

in order to cooperate with S during the second slot. Be-
cause we assume a synchronized scenario, the signals
and are correlated, whereas is mapped onto an in-

dependent signal transmitted at rate using superpo-
sition coding. The destination successively decodes and .
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The derivation of the achievable rate is a straightforward exten-
sion of [12, Proof of Prop. 2]

(31)

(32)

(33)

where

and the transmit power constraints can be written as

(34)

(35)

Equation (31) with the constraints (34) and (35) is similar to
(11) and can be turned into a convex problem in standard form
just like (13). The Source and Relay precoders during the first
and second slot and the time sharing variable which maximize
the achievable rate of the partial DF strategy can be computed
by exactly the same procedures as for the cut-set bound in the
previous section.

B. Full DF

The partial DF strategy requires to implement superposition
coding at the source and successive interference cancellation
at the destination. In this section, we consider a strategy with
reduced implementation complexity at the expense of a lower
achievable rate. We call it Full DF (FDF) and define it as a
variant of partial DF in which the relay decodes the whole mes-
sage and the source does not superimpose a new message during

the second slot (i.e., ). In this case, the achievable rate
simplifies as

(36)

(37)

(38)

(39)

(40)

For any fixed , it can be noticed that is a nonde-
creasing function of , which only depends on . There-
fore, the optimization (36) can be carried on in two steps [see
(41) and (42) at the bottom of the page], where the trivial case

was excluded from the domain.
Note that problem (42) is defined for TDD protocol I. The

computation of the rates and of the FDF
strategy for protocols II and III is somewhat simpler. The rate

is obtained by solving (42) in which is replaced
by the capacity of the point-to-point MIMO link
between R and D

(43)

where problem (43) is the MIMO channel capacity with CSIT
as solved by Telatar in [8]. The rate is given by

(44)

Let also define the noncooperative DF (NCDF) strategy as a
special case of FDF for Protocol II in which the destination only
receives the signal during the second slot. This strategy is well
known in the literature and standard bodies under various other
names such as regenerative multi-hopping or packet forwarding.
It will be used as a benchmark to highlight the gains due to
cooperation in the performance evaluation Section IV of this
paper. The achievable rate for NCDF is

(45)

(41)

(42)
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(46)

From (46) it is clear that the achievable rate of NCDF is upper-
bounded by the minimum between the capacity of the first hop
link and that of the second hop link

(47)

Note that when grows to infinity while the average SNR
per receive antenna remains constant on each link, then (11)
reduces to (45), i.e., NCDF becomes capacity achieving. This
means that the achievable rate gain to be expected from ad-
vanced cooperative coding strategies such as partial DF tends
to reduce as the number of antennas at the relay becomes large.
Coming back to the more complex cooperative case, it can first
be noticed that problems (41) and (42) can be solved using
the convex optimization procedures described previously. How-
ever, we decide to evaluate suboptimum precoders at the Source
and Relay with a structure that further reduces the optimization
complexity.

1) Suboptimum Source Precoder During 1st Slot: Let first
consider the problem (42) in which the Source precoder during
the first time slot is optimized. Let introduce the SVD of and

(48)

We arbitrarily impose the following structure to the source co-
variance matrix:

(49)

The structure (49) stems from the intuition that the source shall
transmit part of its power on the eigenmodes of the channel to
the relay and the rest on the eigenmodes of the channel to the
destination (note the similarity with the precoder optimization
in [6]). Let and denote the number of nonzero singular
values of and . Inserting (48) and (49) into (37) and (38)
gives

(50)

where (a) comes from the Minkowski determinant inequality
and (b) comes from (49). Inserting these lower bounds on

and into the epigraph form of (36) yields the following
lower-bound on

(51)

(52)

(53)

(54)

Before solving the above-defined problem, it can first be noticed
that when the source-relay and source-destination channels are
orthogonal, equality occurs in (50). If and have i.i.d.
complex Gaussian components, let consider the distribution of
the angle between any two rows and of respectively
and . For the quantity

is Beta-distributed with parameters 1 and [26].
This distribution concentrates around 0 as . There-
fore the source precoder that solves (51) becomes optimum for
(42) as grows.

We now derive a procedure for solving (51). Introducing the
perspective function as in (12) allows to turn (51) into a convex
problem which has a reduced number of dimensions compared
to (42) leading to a reduction of the computational complexity.
Unfortunately, writing the KKT conditions for this problem
does not seem to lead to a closed-form expression. However,
for a fixed in (51), the optimization w.r.t. is also a
convex problem for which the KKT conditions lead to

(55)

The solution (55) can be obtained by a water-filling algorithm
with two water levels and which are not in-
dependent due to the total source power constraint (54). Let
define the fraction of Source power trans-
mitted on the source-relay channel eigenmodes, while the rest

is transmitted on the eigenmodes of the source-destina-
tion channel. Finding and amounts to finding the optimum

. Let first assume that both constraints (52) and (53)
are active at the optimum, which yields

(56)

It can be checked that at and is nondecreasing
with . Likewise, is nonincreasing with and equals 0 at

. Therefore, the optimum is found by solving (56)
under the condition that at . When
this constraint is not satisfied, either (52) or (53) is not active and
the solution is trivial (i.e., or ). In order to solve
(51), it remains to perform a one-dimensional optimization with
respect to the variable . Fortunately, it can be checked numer-
ically that the solution of (51) for a given turns out to be
a unimodal function of over the interval , i.e., a function
that is either strictly increasing or strictly decreasing. Therefore,
efficient one-dimensional search techniques such as the Golden
Section Search (see [19, Appendix C.3]) can be employed to
find the optimum .

To summarize, a suboptimum approach to source precoder
optimization with reduced complexity is proposed in this sec-
tion. It consists in transmitting a fraction of the source power
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on the eigenmodes of the channel to the relay and the rest on
the eigenmodes of the channel to the destination. The power as-
signment is provided by a water-filling algorithm with two water
levels that are related by the total source power constraint. This
precoder tends to become optimum as the number of antennas
at the source becomes large.

2) Suboptimum Source and Relay Precoder During 2nd Slot:
Let now consider problem (41) in which the source and relay
precoders are optimized during the second time slot under an
individual power constraint. Introducing the SVD

and the change of variable , (41)
can be rewritten as

(57)

As in [13, Appendix B], we arbitrarily enforce a diagonal struc-
ture . This turns the matrix optimization problem
(57) into the following vector optimization:

(58)

where is the number of nonzero eigenvalues of and
the vectors and have their components defined by

and . The problem (58) can
then be solved at a much lower computational cost than (41).
Note that if we replace the individual power constraints in (57)
by a sum-power constraint ,
then Hadamard determinant inequality can be applied as in [8]
to show that the optimum in (57) is diagonal. In other words,
under a total transmit power constraint at the source and relay,
transmitting on the eigenmodes of the joint channel is
the optimum precoding strategy.

C. Accounting for Actual System Constraints

Due to practical system implementation constraints, several
key assumptions made in the previous paragraphs can be ques-
tioned. We now review them and discuss how more realistic con-
straints can be accounted for.

1) Per-Antenna Power Constraint: A multiple-antenna trans-
mitter radio architecture typically includes one power amplifier
per antenna with an individual maximum output power con-
straint. In this case, the sum-power constraints on
transmit covariance matrices can be replaced by per-antenna
power constraints where is the total device
power and is the number of antennas. The problems ad-
dressed in this paper remain convex and the procedures pro-
posed to solve them remain applicable.

2) MIMO-Orthogonal Frequency Division Multiplexing
(OFDM) Transmission: If the system is wideband and employs
OFDM, the equations must be modified to account for the
parallel transmission on multiple subcarriers. A term
shall be replaced by a sum where is the
number of subcarriers, and and are the signal covariance
and MIMO channel matrices on the th subcarrier. Likewise a

transmit power constraint shall now read .
Standards for wideband systems (e.g., [27]) typically impose
a spectral mask that is almost flat in order to make the inter-
ference generated by the system as white as possible. This
constraint can be translated into a per-subcarrier power con-
straint. Assuming a perfectly flat mask gives: .
Per-antenna and per-subcarrier power constraints can also be
applied simultaneously. Again, all these constraints result in
convex problems that can be solved as presented in this paper.

3) Imperfect CSI: State-of-the-art TDD systems often rely on
uplink/downlink channel reciprocity to enable CSIT exploita-
tion without having to explictly feed back the estimated channel
coefficients. In this case, CSIT imperfection comes from the es-
timation noise and the variations of the channel between the mo-
ment it is estimated in one direction and the moment it is applied
in the other direction. However, in cooperative relaying it is
hard if not impossible to avoid explicit signaling because for in-
stance the source cannot estimate the relay-destination channel
by means of reciprocity. Quantized codebooks for MIMO sys-
tems [28] allow to reduce the amount of feedback. Therefore,
in an actual system CSIT will be degraded by errors due to esti-
mation, channel variations and limited-rate precoder and/or CSI
feedback. Addressing these aspects in the half-duplex MIMO
relay channel is out of the scope of this paper, but the expres-
sions derived here can be taken as a performance upper-bound
when evaluating the degradation introduced by these unavoid-
able imperfections.

IV. SIMULATION RESULTS

In this section, simulation results are presented for the TDD
MIMO relay channel. The upper and lower bounds on capacity
are evaluated and the suboptimality of the precoder optimization
procedures in Section III-B–1) and Section III-B-2) is discussed.

The simulations below assume antennas at the source
and antennas at the relay and destination. Such
an antenna configuration is well suited to a cellular downlink
scenario. The source and relay are subject to the same power
constraint . The MIMO channel on the S-D, S-R,
and R-D links is modeled by i.i.d. complex Gaussian compo-
nents of respective variance and . Therefore, under the
above-defined power constraints, and represent the av-
erage SNR on the S-D, S-R, and R-D links. The destination is
far from both S and R, with dB. The average SNR

on the S-R link is varied from 0 to 30 dB.
On Fig. 1, the average achievable rates of the partial and

full DF strategies are plotted. For comparison purpose, the
average capacity of the S-D link is also plotted with (solid
line) or without (dashed line) CSIT. In this last case, the source
covariance matrix that maximizes the ergodic capacity is [7]

. The average capacity gain provided by
CSIT can be decomposed into an array gain and a waterfilling
gain [29]. Here since there is a 3 dB array gain
plus a large waterfilling gain because is low. It can be
observed that single-hop transmission always outperforms
noncooperative DF. This is obvious from inequality (47) and
the fact that the capacity of the S-D link is larger than that
of the R-D link. Both partial and full DF achieve a large rate
increase over noncooperative DF and single-hop transmission,
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Fig. 1. Upper and lower bounds on TDD MIMO relaying channel capacity with
Source and Relay precoder optimization in a 4� 2� 2 antenna configuration.

and are less than 0.5 bit (per channel use) away from the cut-set
bound for dB. Partial DF outperforms FDF only at low

, when the rate becomes limited by the S-R link capacity.
It can be argued that under the above simulation assumptions,
the comparison with noncooperative DF and single-hop trans-
mission is unfair since the total transmit power is larger for
cooperative protocols during the second slot. Therefore, we
also plot (dotted curve) the achievable rate of the FDF strategy
when the sum-power is constrained to remain lower than
during the second slot. The figure shows that even in this case
FDF outperforms noncooperative protocols at dB.

On Fig. 2, various precoder optimization strategies for FDF
are compared. The highest rate is achieved by matrix convex op-
timization of the source and relay precoders during both slots,
using one of the procedures described in Section II-B. As stated
in Section III-B–1), the vector optimization of the source pre-
coder becomes optimum when is large, but here it can be ob-
served that the incurred loss is already small at (only 0.1
bit). An additional rate penalty occurs at high when the sub-
optimum source and relay precoder structure of Section III-B–2)
is enforced during the second slot. Overall, the degradation due
to suboptimum precoding is lower than 0.5 bit over the whole
SNR range. Finally, the dashed and dotted curves illustrate the
large rate loss when precoders are not optimized during the first
slot (i.e., ) or during both slots

.
On Fig. 3, the optimum power fraction and the optimum

time-sharing obtained by the suboptimum procedure of
Section III-B–1) are plotted vs. . As expected, when the ca-
pacity of the S-R link becomes much larger than that of the other
links, most of the source transmit power during the first slot is
assigned to the eigenmodes of , and most of the time resource
is assigned to the second slot in order to maximize .

On Fig. 4, the achievable rate performance of the three TDD
protocols defined in Section II-A–2) is compared. The SNR
on the R-D link is varied from 0 to 30 dB in an

antenna configuration with and dB.
It can be observed that at high , protocol III only provides a

Fig. 2. Optimum vs. Sub-optimum precoder optimization for full DF strategy
in a 4� 2� 2 antenna configuration. (Legend: � � �� optimization, � �

������ 	
����
������ � � ������ 	
����
�����).

Fig. 3. Suboptimum source precoder during the first slot for full DF strategy:
variation of the time-sharing and power balancing versus SNR on the Source-
Relay link.

marginal gain w.r.t. NCDF. Indeed, from (44) and (46) it can
be checked that when and

then . At high
protocol III is outperformed by protocol II because the duration

of the first slot required for the relay to correctly decode the
message cannot be made arbitrarily small due to the finite ca-
pacity of the S-R link, and only protocol II allows the destina-
tion to receive some information during this first slot. Protocol
I enables the implementation of the partial DF strategy which
yields a large rate increase over both protocols II and III.

Note that although in the above simulations a spatially un-
correlated channel model is assumed, the capacity bounds pre-
sented in this paper are derived without making any assump-
tion on the channel statistics. It is however worth wondering
how they are affected by spatial correlation. For a point-to-point
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Fig. 4. Comparison of TDD Protocols I, II and III in a 2� 2� 2 antenna con-
figuration: achievable rate versus SNR on the R-D link for a 20-dB SNR on the
S-R link and 5-dB SNR on the S-D link.

MIMO link, it is well known [30] that for a given SNR the ca-
pacity reduces as the spatial correlation increases. The same
phenomenon occurs on the relay channel: for instance in (9) the
left-hand term in the decreases as and become
spatially correlated and the right-hand term decreases as and

become spatially correlated.

V. CONCLUSION

We presented a generic methodology to maximize capacity
upper and lower bounds on the MIMO relay channel with full CSI
in the full-duplex and TDD relaying cases. The optimum source
and relay transmit covariance matrices and TDD time-sharing
parameter can be derived by convex optimization, and the gap
between the achievable rate and the capacity can be quantified
for various DF strategies. In particular, we verified that for
realistic antenna configurations and SNR ranges this gap can
actually be quite small. Our optimization procedure illustrates
the application of several mathematical tools borrowed from
convex optimization theory, nonlinear programming, as well as
from complex matrix differentiation to the practical problem of
precoding for the MIMO relay channel. As pointed out in this
paper, the bounds computed here can serve as a benchmark when
studying relaying strategies accounting for CSI imperfections.

APPENDIX

A. Gradient of a Real-Valued Function of Hermitian-Symmetric
Complex Matrices

The differentiation of the objective and constraints w.r.t. the
real variable is straightforward. The differentiation w.r.t. the
real variables and requires to compute

(59)

The remainder of this Appendix addresses the differentiation
w.r.t. matrices and . Using similar notations as [22
, example 5], an Hermitian-symmetric matrix can
be generated by the following so-called “pattern producing”
function:

(60)

where is an matrix that maps the independent
components of the real vector onto the diagonal of (re-
spectively, ) is an matrix that maps the

independent components of (respectively, )
onto the lower-triangular (respectively, upper-triangular) part
of . A convenient way of writing partial derivatives of ma-
trix-valued functions of matrices is introduced in [21]. With this
notation, the partial derivatives of read

(61)

The partial derivatives involved in our optimization problem can
now be computed using [22, eqs. (15), (16), and (17)]:

(62)

where is the extension of to the set of unpatterned matrices.
For unpatterned matrices, the partial derivatives of are well
known [21] and equal to

(63)

Therefore

(64)

(65)

Inserting (61), (64) and (65) into (62) yields

(66)

Likewise

(67)

Finally, the gradient of is given by [22, Theorem 2]

(68)

The partial derivatives of the trace functions that arise from
transmit power constraints in our problems can be computed
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as in (62)–(67) using the well-known [21] unpatterned partial
derivatives

(69)

Note that because the mapping is linear, it preserves con-
vexity. However, in (9) and (12), matrices are not only Hermi-
tian but also PSD. In [22], the Cholesky decomposition

is proposed to parameterize PSD matrices. Unfortunately
in this case, the mapping is nonlinear and a function which is
convex in may be nonconvex in . This is the reason why in
the algorithms proposed in this paper the Hermitian symmetry
is guaranteed by the pattern-producing function, but the posi-
tive semidefiniteness is enforced by either gradient projection
or a barrier function.
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