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Distributed Compression for MIMO Coordinated
Networks with a Backhaul Constraint

Aitor del Coso, Member, IEEE, and Sébastien Simoens

Abstract—We consider the uplink of a backhaul-constrained,
MIMO coordinated network. That is, a single-frequency network
with 𝑁 + 1 multi-antenna base stations (BSs) that cooperate
in order to decode the users’ data, and that are linked by
means of a common lossless backhaul, of limited capacity R.
To implement the receive cooperation, we propose distributed
compression: 𝑁 BSs, upon receiving their signals, compress them
using a multi-source lossy compression code. Then, they send
the compressed vectors to a central BS, which performs users’
decoding. Distributed Wyner-Ziv coding is proposed to be used,
and is designed in this work. The first part of the paper is devoted
to a network with a unique multi-antenna user, that transmits a
predefined Gaussian space-time codeword. For such a scenario,
the ”compression noise” covariance at the BSs is optimized,
considering the user’s achievable rate as the performance metric.
In particular, for 𝑁 = 1 the optimum covariance is derived in
closed form, while for 𝑁 > 1 an iterative algorithm is devised.
The second part of the contribution focusses on the multi-user
scenario. For it, the achievable rate region is obtained by means
of the optimum ”compression noise” covariances for sum-rate
and weighted sum-rate, respectively.

Index Terms—MAC, multiple relay channel, decode-and-
forward.

I. INTRODUCTION

THE current trend to reduce the frequency reuse fac-
tor of cellular networks makes inter-cell interference a

critical problem. A wide range of multi-antenna techniques
are reviewed in [1] to overcome it, including coordinated
scheduling and interference cancelation. However, a more
complex but spectrally efficient solution can be proposed:
coordinated cellular networks [2]. They consist of single-
frequency networks where base stations (BSs) cooperate to:
i) beamform towards the mobile terminals in the downlink,
and ii) coherently detect them in the uplink [3]. Hereafter, we
restrain ourselves to the uplink channel.

Preliminary research on the uplink performance of coor-
dinated networks consider all BSs connected via a lossless
backhaul with unlimited capacity [4] [5]. Accordingly, the
capacity region of the network equals that of a multiple-input,
multiple-output (MIMO) multi-access channel, with a supra-
receiver containing all the antennas of all cooperative BSs [6].
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Such an assumption seems optimistic in short-mid term, as op-
erators are currently worried about the costs of upgrading their
backhaul to support e.g., High-speed Packet Access (HSPA).
To deal with a realistic backhaul constraint, two approaches
have been proposed: i) Distributed decoding [7], consisting on
a demodulating scheme distributively carried out among BSs,
based on local decisions and belief propagation. Decoding
delay appears to be its main drawback. ii) Quantization [8],
where BSs quantize their observations and forward them to
the decoding unit. Its main limitation relies on its inability to
take profit of signal correlation between BSs, which introduces
redundancy into the backhaul.

This paper considers a new approach for the network:
distributed compression. The cooperative BSs, upon receiving
their signals, distributively compress them using a multi-
source lossy compression code [9]. Then, via the lossless
backhaul, they transmit the compressed signals to the central
unit (also a BS), which decompresses them using its own
received signal as side information. Then it estimates the
users’ messages. Distributed compression has been previously
proposed for coordinated networks in [10], [11]. In those
works, authors consider single-antenna BSs with block and
ergodic fading. We build upon these results to extend the
analysis to the MIMO case with constant channel gains.

The compression of signals with side information at the
decoder was introduced by Wyner and Ziv in [12], [13]. They
showed that side information at the encoder is useless (i.e.,
the rate-distortion tradeoff remains unchanged) to compress a
single, Gaussian source when the side information is available
at the decoder [13, Section 3]. Unfortunately, when consider-
ing multiple (correlated) signals, independently compressed at
different BSs and to be recovered at a central unit with side
information, no conclusive results are available to date. Indeed,
this is an open problem for which, to the best of authors
knowledge, the tightest lower bound (in a rate-distortion sense)
is obtained with Distributed Wyner-Ziv (D-WZ) compression
[14]. Such a compression is the direct extension of Berger-
Tung coding to the decoding side information case [15]. In
turn, Berger-Tung compression is the lossy counterpart of the
Slepian-Wolf lossless coding [16]. D-WZ coding is thus the
compression scheme proposed to be used, as detailed below.

Summary of Contributions. This paper considers a single-
frequency network with 𝑁 + 1 multi-antenna BSs. The first
base station, denoted BS0, is the central unit and centralizes
the users’ decoding. The rest, BS1, ⋅ ⋅ ⋅ ,BS𝑁 , are cooperative
BSs, which distributively compress their received signals using
a D-WZ code, and independently transmit them to BS0
via the common backhaul of aggregate capacity R. In the
network, constant, frequency-flat channels are assumed as well
as receive channel state information (CSI) at the central unit.
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The first part of the paper is devoted to a network with a
single user, equipped with multiple antennas and transmitting a
pre-defined Gaussian space-time codeword. The contributions
are organized as follows:

∙ The system model and the user’s achievable rate are
presented in Sec. II. The latest is derived modelling the
compression step by means of Gaussian ”compression
noise”, added by the BSs on their observations before
retransmitting them to the central unit.

∙ Considering a unique cooperative BS (i.e., 𝑁 = 1), Sec.
III derives, in closed form, the optimum ”compression
noise” covariance for which the user’s rate is maximized.
We also show that conditional Karhunen-Loève transform
plus independent Wyner-Ziv coding of scalar streams is
optimal.

∙ The analysis is extended in Sec. IV to arbitrary 𝑁 BSs.
In particular, the optimum ”compression noise” covari-
ances are obtained by means of an iterative algorithm,
constructed using dual decomposition and a non-linear
block coordinate approach [17], [18].

The second part of the paper extends the analysis to multiple
users transmitting simultaneously:

∙ First, the sum-rate of the network is derived in Sec. V,
adapting single-user results. Later, the weighted sum-
rate, and its associated optimum ”compression noise”
covariances, is obtained by means of an iterative algo-
rithm, constructed using dual decomposition and Gradient
Projection [18].

Notation. E {⋅} denotes expectation. A𝑇 , A† and 𝑎∗ stand
for the transpose of A, conjugate transpose of A and com-
plex conjugate of 𝑎, respectively. [𝑎]+ = max {𝑎, 0}. 𝐼 (⋅; ⋅)
denotes mutual information, 𝐻 (⋅) entropy. The derivative of
scalar 𝑓 (⋅) with respect to matrix X is defined as in [19], i.e.,[
∂𝑓
∂X

]
𝑖,𝑗

= ∂𝑓
∂[X]𝑖,𝑗

. In such a way, e.g., ∂tr{AX}
∂X = A𝑇 . We

compactly write Y1:𝑁 = {Y1, ⋅ ⋅ ⋅ ,Y𝑁}, Y𝒢 = {Y𝑖∣𝑖 ∈ 𝒢}
and Y𝑐

𝑗 = {Y𝑖∣𝑖 ∕= 𝑗}. A sequence {Y𝑡
𝑖}𝑛𝑡=1 is compactly

denoted by Y𝑛
𝑖 . diag (A1, ⋅ ⋅ ⋅ ,A𝑛) is a block-diagonal matrix

with A𝑖 square. coh (⋅) stands for convex hull. Finally, the co-
variance of X conditioned on Y is denoted by RX∣Y and com-

puted RX∣Y = E
{
(X−E {X∣Y}) (X−E {X∣Y})† ∣Y

}
.

II. SYSTEM MODEL

Let a single source 𝑠, equipped with 𝑀𝑡 antennas, transmit
data to base stations BS0, ⋅ ⋅ ⋅ ,BS𝑁 , each equipped with
𝑀𝑖, 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑁 antennas. The BSs are connected to
a common lossless backhaul of aggregate capacity R, and
BS0 is selected to be the decoding unit. Such an aggregate
sum-rate constraint aims at modeling 3G scenarios where
BSs are connected to a common backhaul via radio network
controllers; however, further scenarios can be identified with
e.g. per-link constraints. Likewise, we assume the user-to-BSs
assignment to be given by upper layers and out of the scope of
the paper (see e.g. [5] for assignment algorithms and selection
criteria).

The source transmits a message 𝜔 ∈ {1, ⋅ ⋅ ⋅ , 2𝑛𝜃} mapped
onto codeword X𝑛

𝑠 , drawn i.i.d. from vector X𝑠 ∼ 𝒞𝒩 (0,Q)
and not subject to optimization. 𝑛 is the number of transmitted

symbols. The BSs receive:

Y𝑛
𝑖 = H𝑠,𝑖 ⋅X𝑛

𝑠 +N𝑛
𝑖 , 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑁. (1)

H𝑠,𝑖 is the MIMO channel matrix between user 𝑠 and BS𝑖, and
N𝑖 ∼ 𝒞𝒩 (0, 𝜎2

𝑟I
)

is additive white Gaussian noise (AWGN).
Channel coefficients are all known at BS0.
BS1, ⋅ ⋅ ⋅ ,BS𝑁 then apply a D-WZ code to their received

signals and send them to BS0 via the common backhaul.
In turn, BS0 decodes the user’s message in two consecutive
steps: first, it decompresses the BSs signals using Y𝑛

0 as side
information. Next, it coherently combines them (along with
Y𝑛

0 ) to decode the user message. Such a coding/decoding
scheme is equivalent to that presented in [10, Theorem 1]
and we don’t claim it is optimal. Indeed, two weaknesses can
be identified: i) as pointed out in [10], BS0 is assumed to
decompress without errors, which is unnecessarily restrictive.
In fact, it would be enough forcing the user’s message to
be decoded without errors, and ii) D-WZ is not shown to
be optimal. However, despite its sub-optimality, we use this
approach as a first application of compression to MIMO
coordinated networks.

A. The Achievable Rate

Proposition 1: Let X𝑠 ∼ 𝒞𝒩 (0,Q). The MIMO coordi-
nated network achieves the rate (2) with D-WZ compression,
where the conditional covariance RY1:𝑁 ∣Y0

follows (42) and
Φ𝑛 is the spatial covariance of the independent, Gaussian,
”compression noise” at BS𝑛.

Remark 1: The maximization in (2) is not concave in
standard form: although the feasible set is regular and convex,
the objective function is not concave on Φ1, ⋅ ⋅ ⋅ ,Φ𝑁 .

Proof: The Proposition is proven by merely applying1

[10, Theorem 1]. In particular, considering D-WZ coding with
compression rates 𝜌1, ⋅ ⋅ ⋅ , 𝜌𝑁 at the cooperative BSs, the
user’s transmission rate 𝜃 is achievable if there exists a set
of random vectors Ŷ1:𝑁 such that:

i)
(
Y0,Y

𝑐
𝑖 , Ŷ

𝑐
𝑖

)
↔ Y𝑖 ↔ Ŷ𝑖 form a Markov chain,

ii) 𝜃 ≤ 𝐼
(
X𝑠;Y0, Ŷ1:𝑁

)
,

iii) ∀𝒢 ⊆ {1, ⋅ ⋅ ⋅ , 𝑁} : 𝐼
(
Y𝒢 ; Ŷ𝒢 ∣Y0, Ŷ

𝑐
𝒢
)
≤∑𝑖∈𝒢 𝜌𝑖.

The statement is proven for discrete channels by Sanderovich
et. al. in [10, Appendix III] and extended to the Gaussian case
in [10, Section VI]. In the framework of distributed compres-
sion, Ŷ𝑖 represents the observation of BS𝑖 reconstructed by
the decoding unit.

Let us notice now that, in our setup, there is only an
aggregate backhaul rate constraint R, i.e.,

∑
𝑖∈𝒢 𝜌𝑖 ≤ R, ∀𝒢 ⊆

{1, ⋅ ⋅ ⋅ , 𝑁}. Therefore, the set of constraints in iii) can all

be re-stated as: ∀𝒢 ⊆ {1, ⋅ ⋅ ⋅ , 𝑁} : 𝐼
(
Y𝒢 ; Ŷ𝒢 ∣Y0, Ŷ

𝑐
𝒢
)
≤

R. However, from the Markov chain in i), the follow-
ing inequality can be shown: 𝐼

(
Y𝒢 ; Ŷ𝒢 ∣Y0, Ŷ

𝑐
𝒢
)

≤
𝐼
(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
, ∀𝒢 ⊆ {1, ⋅ ⋅ ⋅ , 𝑁}. Accordingly, forc-

ing the constraint 𝐼
(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
≤ R to hold makes

1It is necessary to take into account that, unlike [10], in our case the central
unit uses its own received signal as side information to decompress.
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𝑅D−WZ = max
Φ1,⋅⋅⋅ ,Φ𝑁ર0

log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 +Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H𝑠,𝑛

)
, (2)

s.t. log det
(
I+ diag

(
Φ−1

1 , ⋅ ⋅ ⋅ ,Φ−1
𝑁

)
RY1:𝑁 ∣Y0

) ≤ R

all constraints in iii) hold too. The converse is, obvi-
ously, true by noting that 𝐼

(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
is equal to

𝐼
(
Y𝒢 ; Ŷ𝒢 ∣Y0, Ŷ

𝑐
𝒢
)

with 𝒢 = {1, ⋅ ⋅ ⋅ , 𝑁}. Therefore,

iii) 𝐼
(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
≤ R ⇔ (3)

𝐼
(
Y𝒢 ; Ŷ𝒢 ∣Y0, Ŷ

𝑐
𝒢
)
≤ R, ∀𝒢 ⊆ {1, ⋅ ⋅ ⋅ , 𝑁} .

Then, consider Gaussian random vectors of the form Ŷ𝑖 =
Y𝑖 + Z𝑖, where Z𝑖 ∼ 𝒞𝒩 (0,Φ𝑖) is independent of Y𝑖 and
is referred to as ”compression noise”. With such vectors, we
evaluate that, if

ii)𝜃 ≤ log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 (4)

+Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H𝑠,𝑛

)

iii) log det
(
I+ diag

(
Φ−1

1 , ⋅ ⋅ ⋅ ,Φ−1
𝑁

)
RY1:𝑁 ∣Y0

) ≤ R,

then 𝜃 is achievable.
The main goal of this paper is to optimize, by means of itera-
tive algorithms, the spatial covariances matrices Φ1, ⋅ ⋅ ⋅ ,Φ𝑁

so as to maximize the coordinated network achievable rate.

B. Useful Upper Bounds

Upper Bound 1: The achievable rate 𝑅D−WZ in (2) is
upper bounded by

𝑅D−WZ ≤ 𝐼 (X𝑠;Y0,Y1:𝑁 )

= log det

(
I+

Q

𝜎2
𝑟

𝑁∑
𝑛=0

H†
𝑠,𝑛H𝑠,𝑛

)
. (5)

Upper Bound 2: The achievable rate 𝑅D−WZ in (2) satis-
fies

𝑅D−WZ ≤ 𝐼 (X𝑠;Y0) + R

= log det

(
I+

1

𝜎2
𝑟

H𝑠,0QH†
𝑠,0

)
+R. (6)

Proof: It follows directly from the max-flow-min-cut
upper bound [20, Theorem 14.10.1]

Remark 2: Notice that, independently of the number of
BSs, the achievable rate is bounded above by the capacity
with BS0 plus the backhaul rate.

III. THE TWO-BASE STATIONS CASE

We first solve (2) for 𝑁 = 1. As mentioned, the objective
function, which has to be maximized, is convex on Φ1 ર 0. In
order to make it concave, we change the variables Φ1 = A−1

1 ,
so that

𝑅D−WZ = max
A1ર0

log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 (7)

+QH†
𝑠,1

(
A1𝜎

2
𝑟 + I

)−1
A1H𝑠,1

)
s.t. log det

(
I+A1RY1∣Y0

) ≤ R.

The objective has turned into concave. However, the constraint
now does not define a convex feasible set. Therefore, Karush-
Kuhn-Tucker (KKT) conditions become necessary but not
sufficient for optimality. In order to solve the problem, we
thus need to resort to the general sufficiency condition [18,
Proposition 3.3.4]. The solution is presented in the next
Theorem.

Theorem 1: Let X𝑠 ∼ 𝒞𝒩 (0,Q) and let the conditional
covariance be (see Appendix A-A):

RY1∣Y0
= H𝑠,1

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0

)−1

QH†
𝑠,1 + 𝜎2

𝑟I (8)

with eigen decomposition RY1∣Y0
=

Udiag (𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑀1)U
†. 𝑅D−WZ is attained with

a ”compression noise” covariance at BS1 equal to
Φ∗

1 = U (diag (𝜂1, ⋅ ⋅ ⋅ , 𝜂𝑀1))
−1

U†, where

𝜂𝑗 =

[
1

𝜆

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

]+
, (9)

and 𝜆 is such that
∑𝑀1

𝑗=1 log (1 + 𝜂𝑗𝑠𝑗) = R.
Proof: See Appendix B. The result can be viewed as a

Wyner-Ziv rate allocation, equivalent to that in [21].

A. Practical Implementation

In this subsection, we show that the compression de-
rived in Theorem 1 can be practically carried out using a
Transform Coding (TC) approach. TC consists of BS1 first
transforming its received vector using an invertible linear
function and then separately compressing the resulting scalar
streams [22]. In particular, we show that the conditional
Karhunen-Loève transform (CKLT) is an optimal linear trans-
formation [22]. First, recall that multiplying a vector by a
non-singular matrix does not change the mutual informa-
tion [20], i.e., 𝐼

(
X𝑠;Y0, Ŷ1

)
= 𝐼

(
X𝑠;Y0,U

†Ŷ1

)
and

𝐼
(
Y1; Ŷ1∣Y0

)
= 𝐼
(
Y1;U

†Ŷ1∣Y0

)
. From Theorem 1, the

optimum compressed vector satisfies Ŷ∗
1 = Y1 + Z∗

1, with
Z∗
1 ∼ 𝒞𝒩 (0,U𝜼−1U†) and RY1∣Y0

= USU†. Therefore,
the following compressed vectors are also optimal

Ŷ1 = U†Y1 +U†Z∗
1, (10)

where vector U†Y1 is referred to as the CKLT of vector Y1.
Notice now that RŶ1∣Y0

= RU†Y1∣Y0
+RU†Z∗

1
= S+ 𝜼−1

is diagonal. Therefore, the elements of the compressed vector
Ŷ1 are conditionally uncorrelated given Y0. Likewise, so
are the elements of vector U†Y1. Due to this uncorrela-
tion, each element 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀1 of vector U†Y1 can be
compressed, without loss of optimality, independently of the
compression of the others elements, at a compression rate
𝑟𝑗 = log (1 + 𝜂𝑗𝑠𝑗), 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀1 [13]. In fact, from
Theorem 1 we validate that

∑𝑀1

𝑗=1 𝑟𝑗 = R. This demonstrates
that CKLT plus independent coding of streams is optimal, not
only for minimizing distortion as shown in [22], but also for
maximizing the achievable rate of coordinated networks.
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IV. THE MULTIPLE-BASE STATIONS CASE

Consider now BS0 assisted by 𝑁 > 1 cooperative BSs. The
achievable rate follows (2) where, as mentioned, the objective
function is not concave over Φ𝑛 , 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 . To make
it concave, we again change the variables: Φ𝑛 = A−1

𝑛 , 𝑛 =
1, ⋅ ⋅ ⋅ , 𝑁 , so that:

𝑅D−WZ = max
A1,⋅⋅⋅ ,A𝑁ર0

log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 (11)

+Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
A𝑛𝜎

2
𝑟 + I

)−1
A𝑛H𝑠,𝑛

)

s.t. log det
(
I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑁 )RY1:𝑁 ∣Y0

) ≤ R.

As previously, the feasible set does not define a convex set.
Our strategy to solve the optimization is the following: first,
we show that (although not convex) the duality gap for the
problem is zero. Later, we propose an iterative algorithm that
solves the dual problem, thus solving the primal problem too.
The key property of the dual problem is that the coupling
constraint in (11) is decoupled [18, Chapter 5].

A. The dual problem

Let the Lagrangian of (11) be defined on A𝑛 ર 0, 𝑛 =
1, ⋅ ⋅ ⋅ , 𝑁 and 𝜆 ≥ 0 as in (12). The dual function 𝑔 (𝜆) is
then computed as [17, Section 5.1]:

𝑔 (𝜆) = max
A1,⋅⋅⋅ ,A𝑁ર0

ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) , (14)

while the solution of the dual problem is obtained from

𝒞′ = min
𝜆≥0

𝑔 (𝜆) . (15)

Lemma 1: The duality gap for optimization (11) is zero,
i.e., the primal problem (11) and the dual problem (15) have
the same solution.

Proof: The duality gap for problems of the form of
(11), and satisfying the time-sharing property, is zero [23,
Theorem 1]. Time-sharing property is defined as follows:
let 𝒞𝑥, 𝒞𝑦, 𝒞𝑧 be the solution of (11) for backhaul rates
R𝑥,R𝑦,R𝑧 , respectively. Consider R𝑧 = 𝜈R𝑥+(1− 𝜈)R𝑦 for
some 0 ≤ 𝜈 ≤ 1. Then, the property is satisfied if and only if
𝒞𝑧 ≥ 𝜈𝒞𝑥+(1− 𝜈) 𝒞𝑦, ∀ 𝜈 ∈ [0, 1]. That is, if the solution of
(11) is concave with respect to the backhaul rate R. It is well
known that time-sharing of compressions cannot decrease the
resulting distortion [20, Lemma 13.4.1], neither improve the
mutual information obtained from the reconstructed vectors2.
Hence, the property holds for (11), and the duality gap is zero.

We then solve the dual problem in order to obtain the
solution of the primal. First, consider maximization (14). As
expected, the maximization can not be solved in closed form.
However, as the feasible set (i.e., A1, ⋅ ⋅ ⋅ ,A𝑁 ર 0) is the
cartesian product of convex sets, then a block coordinate
ascent algorithm3 can be used to search for the maximum [18,
Section 2.7]. The algorithm iteratively optimizes the function
with respect to one A𝑛 while keeping the others fixed. It has

2In the proof of [20, Lemma 13.4.1], optimal source coding is assumed.
However, time-sharing distortion deterioration also holds when using subop-
timal codes as ours.

3Also known as Non-Linear Gauss-Seidel algorithm [24, Section II-C].

been previously used to e.g., solve the sum-capacity problem
of MIMO multiple access channels with individual and sum-
power constraint [25] [26]. We define it for our problem as:

A𝑡+1
𝑛 = arg max

A𝑛ર0
ℒ (A𝑡+1

1 , ⋅ ⋅ ⋅ ,A𝑡+1
𝑛−1,A𝑛,

A𝑡
𝑛+1, ⋅ ⋅ ⋅ ,A𝑡

𝑁 , 𝜆
)
, (16)

where 𝑡 is the iteration index. As shown in Theorem 2, the
maximization (16) is uniquely attained.

Theorem 2: Let the optimization A∗
𝑛 =

argmaxA𝑛ર0 ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) and the conditional
covariance matrix (See Appendix A-A)

RY𝑛∣Y0,Ŷ𝑐
𝑛
= H𝑠,𝑛

(
I+Q

(
1

𝜎2
𝑟

H†
𝑠,0H𝑠,0

+
∑
𝑝∕=𝑛

H†
𝑠,𝑝

(
A𝑝𝜎

2
𝑟I+ I

)−1
A𝑝H𝑠,𝑝

⎞
⎠
⎞
⎠

−1

QH†
𝑠,𝑛 + 𝜎2

𝑟I

with eigen-decomposition RY𝑛∣Y0,Ŷ𝑐
𝑛
= U𝑛SU

†
𝑛. The opti-

mum is attained at A∗
𝑛 = U𝑛𝜼U

†
𝑛, where

𝜂𝑗 =

[
1

𝜆

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

]+
, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀𝑛. (17)

Proof: See Appendix C-A for the proof.
Function ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) is continuously differentiable

and the maximization (16) is uniquely attained. Hence, the
limit point of the sequence {A𝑡

1, ⋅ ⋅ ⋅ ,A𝑡
𝑁} is proven to con-

verge to a stationary point [18, Proposition 2.7.1]. To demon-
strate convergence to the global maximum, though, it would
be necessary to show that the mapping 𝑇 (A1, ⋅ ⋅ ⋅ ,A𝑁 ) =
[A1 + 𝛾∇A1ℒ, ⋅ ⋅ ⋅ ,A𝑁 + 𝛾∇A𝑁ℒ] is a block-contraction4

for some 𝛾 [27, Proposition 3.10]. Unfortunately, we were
not able to demonstrate the contraction property, although
simulation results suggest global convergence of our algorithm
always.

Once obtained 𝑔 (𝜆) through the Gauss-Seidel Algorithm5,
it remains to minimize it on 𝜆 ≥ 0. First, recall that 𝑔 (𝜆)
is a convex function by definition, since it is defined as
the pointwise maximum of a family of affine functions [17].
Hence, to minimize it, we may use a subgradient approach
as e.g., that proposed by Yu in [26]. The subgradient search
consists on following search direction −ℎ (𝜆) such that

𝑔 (𝜆′)− 𝑔 (𝜆)

𝜆′ − 𝜆
≥ ℎ (𝜆) ∀𝜆′. (18)

Such a search is proven to converge to the global minimum
for diminishing step-size rules [24, Section II-B]. Considering
the definition of 𝑔 (𝜆), the following ℎ (𝜆) satisfies (18):

ℎ (𝜆) = R− log det
(
I+ diag (A1:𝑁 (𝜆))RY1:𝑁 ∣Y0

)
. (19)

where A1:𝑁 (𝜆) is the limit point of (16). Therefore, it is used
to search for the optimum 𝜆 as:

increase 𝜆 if ℎ (𝜆) ≤ 0 or decrease 𝜆 if ℎ (𝜆) > 0. (20)

Consider now 𝜆0 = 1 as the initial value of the Lagrange
multiplier. For such a multiplier, the optimum solution of (14)

4See [27, Section 3.1.2] for the definition of block-contraction.
5Assume hereafter that the algorithm has converged to the global maximum

of ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆).
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ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) = log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 +Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
A𝑛𝜎

2
𝑟 + I

)−1
A𝑛H𝑠,𝑛

)
(12)

−𝜆 ⋅ (log det (I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑁 )RY1:𝑁 ∣Y0

)− R
)
.

ℛD−WZ = coh

⎛
⎜⎜⎜⎝

∪
Φ1,⋅⋅⋅ ,Φ𝑁

∈𝑐(R)

⎧⎨
⎩
𝑅1,2 :

𝑅1 ≤ log det
(
I+ Q1

𝜎2
𝑟
H†

1,0H1,0 +Q1

∑𝑁
𝑛=1 H

†
1,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H1,𝑛

)
𝑅2 ≤ log det

(
I+ Q2

𝜎2
𝑟
H†

2,0H2,0 +Q2

∑𝑁
𝑛=1 H

†
2,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H2,𝑛

)
𝑅1 +𝑅2 ≤ log det

(
I+ Q

𝜎2
𝑟
H†

𝑠,0H𝑠,0 +Q
∑𝑁

𝑛=1 H
†
𝑠,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H𝑠,𝑛

)
⎫⎬
⎭

⎞
⎟⎟⎟⎠ (13)

is {A∗
1. ⋅ ⋅ ⋅ ,A∗

𝑁} = 0 and the subgradient (19) is ℎ
(
𝜆0
)
=

R (See Appendix C-B). Hence, following (20), the optimum
value of 𝜆 is strictly lower than one. Algorithm 1 takes all
this into account in order to solve the dual problem, hence
solving the primal too. As mentioned, we can only claim local
convergence of the algorithm.

Algorithm 1 Multiple-BSs dual problem

1: Initialize 𝜆min = 0 and 𝜆max = 1
2: repeat
3: 𝜆 = 𝜆max−𝜆min

2
4: Obtain {A∗

1, ⋅ ⋅ ⋅ ,A∗
𝑁} = argmaxℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆)

from Algorithm 2
5: Evaluate ℎ (𝜆) as in (19).
6: if ℎ (𝜆) ≤ 0, then 𝜆min = 𝜆, else 𝜆max = 𝜆
7: until 𝜆max − 𝜆min ≤ 𝜖

8: {Φ∗
1, ⋅ ⋅ ⋅ ,Φ∗

𝑁} =
{
(A∗

1)
−1
, ⋅ ⋅ ⋅ , (A∗

𝑁 )
−1
}

Algorithm 2 Block-coordinate algorithm to obtain 𝑔 (𝜆)

1: Initialize A0
𝑛 = 0, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 and 𝑡 = 0

2: repeat
3: for 𝑛 = 1 to 𝑁 do
4: Take RY𝑛∣Y0,Ŷ𝑐

𝑛

(
A𝑡+1

1 , ⋅ ⋅ ⋅ ,A𝑡+1
𝑛−1,A

𝑡
𝑛+1, ⋅ ⋅ ⋅ ,A𝑡

𝑁

)
from (17).

5: Compute its eigen-decomposition U𝑛SU
†
𝑛 and eval-

uate 𝜼 as in (17).
6: Update A𝑡+1

𝑛 = U𝑛𝜼U
†
𝑛.

7: end for
8: 𝑡 = 𝑡+ 1
9: until The sequence converges {A𝑡

1, ⋅ ⋅ ⋅ ,A𝑡
𝑁} →

{A∗
1, ⋅ ⋅ ⋅ ,A∗

𝑁}
10: Return {A∗

1, ⋅ ⋅ ⋅ ,A∗
𝑁}

V. THE MULTIPLE USER SCENARIO

In previous sections, we considered a single user within
the network. To complement the analysis, we study hereafter
multiple senders transmitting simultaneously. For simplicity,
we consider two users, 𝑠1 and 𝑠2, transmitting two indepen-
dent messages 𝜔𝑢 ∈ {1, ⋅ ⋅ ⋅ , 2𝑛𝑅𝑢

}
, 𝑢 = 1, 2, mapped onto

codewords X𝑛
𝑢 , 𝑢 = 1, 2, respectively. Codewords are drawn

i.i.d. from random vectors X𝑢 ∼ 𝒞𝒩 (0,Qu), 𝑢 = 1, 2 and
not subject to optimization. Hence, now, the BSs receive:

Y𝑛
𝑖 =

2∑
𝑢=1

H𝑢,𝑖X
𝑛
𝑢 +N𝑛

𝑖 , 𝑖 = 0, ⋅ ⋅ ⋅ , 𝑁, (21)

where H𝑢,𝑖 is the MIMO channel between user 𝑠𝑢 and
BS𝑖, and N𝑖 ∼ 𝒞𝒩 (0, 𝜎2

𝑟I
)
. As previously, signals at

BS1, ⋅ ⋅ ⋅ ,BS𝑁 are compressed using a D-WZ code and later
sent to BS0, which centralizes decoding.

Using previous arguments and considering the MIMO-
MAC capacity region [20, Theorem 14.3.1], the set
ℛD−WZ of transmission rate-duples (𝑅1, 𝑅2) that can
be reliably decoded at the BS0 is (13), where 𝑐 (R) ={
Φ1:𝑁 : log det

(
I+ diag

(
Φ−1

1 , ⋅ ⋅ ⋅ ,Φ−1
𝑁

)
RY1:𝑁 ∣Y0

) ≤ R
}
,

Q = diag (Q1,Q2) and H𝑠,𝑛 = [H1,𝑛, H2,𝑛], for
𝑛 = 0, ⋅ ⋅ ⋅ , 𝑁 . Covariance RY1:𝑁 ∣Y0

is calculated in
Appendix A-B. The union in (13) is explained by the fact
that compression codebooks might be arbitrarily chosen at
the BSs. To evaluate such a region, we resort to the weighted
sum-rate (WSR) optimization [28, Sec. III-C]. That is, we
express

ℛD−WZ = {(𝑅1, 𝑅2) : 𝛼𝑅1 + (1− 𝛼)𝑅2 ≤ (22)

ℛ (𝛼) , ∀𝛼 ∈ [0, 1]} ,
with ℛ (𝛼) the maximum WSR, given weights 𝛼 and (1− 𝛼)
for user 𝑠1 and 𝑠2, respectively. Such a WSR is attained at the
boundary of the region. It is easily shown that the boundary
points of (13) can be achieved using successive interference
cancellation (SIC) at the BS0, and (optionally) time-sharing
(TS). SIC consists of first decoding the user with lowest weight
(i.e., priority) considering the second user as interference.
Later, once decoded the first user, the decoder subtracts its
contribution to the received signal, and then decodes the
second user without interference.

A. Useful Outer Regions

Prior to solving the WSR optimization, we present two outer
regions on (13).

Outer Region 1: If (𝑅1, 𝑅2) ∈ ℛD−WZ, then

𝑅1 ≤ log det
(
I+ Q1

𝜎2
𝑟

∑𝑁
𝑛=0 H

†
1,𝑛H1,𝑛

)
𝑅2 ≤ log det

(
I+ Q2

𝜎2
𝑟

∑𝑁
𝑛=0 H

†
2,𝑛H2,𝑛

)
𝑅1 +𝑅2 ≤ log det

(
I+ Q

𝜎2
𝑟

∑𝑁
𝑛=0 H

†
𝑠,𝑛H𝑠,𝑛

)
Remark 3: This is the capacity region when Y𝑖, 𝑖 =

1, ⋅ ⋅ ⋅ , 𝑁 are available at BS0.
Outer Region 2: If (𝑅1, 𝑅2) ∈ ℛD−WZ then

𝑅1 +𝑅2 ≤ log det

(
I+

1

𝜎2
𝑟

H𝑠,0QH†
𝑠,0

)
+R.

Proof: It is equivalent to the proof of upper bound 2.
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B. Sum Rate Maximization

The maximum sum-rate of (13) is identical to the maximum
transmission rate of a single user 𝑠 transmitting a vector X𝑠 =[
X𝑇

1 ,X
𝑇
2

]𝑇
over an equivalent channel H𝑠,𝑛 = [H1,𝑛, H2,𝑛],

𝑛 = 0, ⋅ ⋅ ⋅ , 𝑁 . Hence, to obtain it we resort to Algorithm 1.

C. Weighted Sum Rate Maximization

Let consider the WSR optimization with 𝛼 > 1
2 (i.e., higher

priority to user 1, which is decoded last at the SIC). With such
a decoding, the rate of user 1 is then

𝑅1 = log det

(
I+

Q1

𝜎2
𝑟

H†
1,0H1,0+ (23)

Q1

𝑁∑
𝑛=1

H†
1,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H1,𝑛

)
.

On the other hand, the rate of user 2, which is decoded first,
follows:

𝑅2 = log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0+ (24)

Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
𝜎2
𝑟I+Φ𝑛

)−1
H𝑠,𝑛

)
−𝑅1,

where Q = diag (Q1,Q2) and H𝑠,𝑛 = [H1,𝑛, H2,𝑛]. The
WSR, 𝛼𝑅1+(1− 𝛼)𝑅2, which has to be maximized is convex
on Φ1, ⋅ ⋅ ⋅ ,Φ𝑁 . To make it concave, we change the variables
Φ𝑛 = A−1

𝑛 , 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 . Then, plugging (23) and (24) into
(22), the WSR optimization turns into

ℛ (𝛼) = max
A1,⋅⋅⋅ ,A𝑁

𝛼 ⋅ 𝑅1 + (1− 𝛼) ⋅𝑅2 (25)

s.t. log det
(
I+ diag (A1:𝑁 )RY1:𝑁 ∣Y0

) ≤ R

As previously, the constraint does not define a convex feasible
set. To solve the optimization, we follow the same strategy
presented previously: first, we show that the optimization has
zero duality gap. Later, we propose an iterative algorithm that
solves the dual problem, thus solving the primal problem too.

Lemma 2: The duality gap for the WSR optimization (25)
is zero.

Proof: Applying the time-sharing property in [23, Theo-
rem 1] the zero-duality gap is demonstrated.

Let us then solve the dual problem. The Lagrangian for
optimization (25) is defined as:

ℒ𝛼 (A1, ⋅ ⋅ ⋅ ,A𝑛, 𝜆) = 𝛼 ⋅𝑅1 + (1− 𝛼) ⋅𝑅2 − (26)

𝜆 ⋅ (log det (I+ diag (A1:𝑁 )RY1:𝑁 ∣Y0

)− R
)

The first step is to find the dual function [18, Section 5]

𝑔𝛼 (𝜆) = max
A1,⋅⋅⋅ ,A𝑛ર0

ℒ𝛼 (A1, ⋅ ⋅ ⋅ ,A𝑛, 𝜆) (27)

In previous sections, we showed that such an optimization
can be tackled using a block-coordinate algorithm. Unfortu-
nately, now, the maximization with respect to a single A𝑛

cannot be solved in closed-form and is not clear to be uniquely
attained. Hence, to solve (27), we propose another algorithm:
the gradient projection method (GP) [18, Section 2.3]. GP has
been used to e.g., compute transmit covariances for MIMO
interference channels and the WSR of MIMO broadcast chan-
nels [29, Section IV-C] [30]. It is defined as follows: let (27),

and consider the initial point
{
A0

1, ⋅ ⋅ ⋅ ,A0
𝑛

} ર 0. It iteratively
updates [18, Section 2.3.1]:

A𝑡+1
𝑛 = A𝑡

𝑛 + 𝛾𝑡
(
Ā𝑡

𝑛 −A𝑡
𝑛

)
, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 (28)

where 𝑡 is the iteration index and 0 < 𝛾𝑡 ≤ 1 is the step size.
Also,

Ā𝑡
𝑛 =

[
A𝑡

𝑛 + 𝑠𝑡 ⋅ ∇A𝑛ℒ𝛼

(
𝜆,A𝑡

1, ⋅ ⋅ ⋅ ,A𝑡
𝑁

)]
ર0
, (29)

with 𝑠𝑡 ≥ 0 an scalar and ∇A𝑛ℒ𝛼 (𝜆,A𝑡
1, ⋅ ⋅ ⋅ ,A𝑡

𝑁 ) the gra-
dient of ℒ𝛼 (⋅) with respect to A𝑛, evaluated at A𝑡

1, ⋅ ⋅ ⋅ ,A𝑡
𝑁 .

Finally, [⋅]ર0 denotes the projection (with respect to the Frobe-
nius norm) onto the cone of positive semidefinite matrices.
Whenever 𝛾𝑡 and 𝑠𝑡 are chosen appropriately, the sequence
{A𝑡

1, ⋅ ⋅ ⋅ ,A𝑡
𝑛} is proven to converge to a stationary point of

(27) [18, Proposition 2.2.1]. For global convergence to hold,
the contraction property must be satisfied. Unfortunately, we
were not able to prove this property for our optimization.

In order to make the algorithm work for the problem, we
need to: i) compute the projection of a Hermitian matrix
S, with eigen-decomposition S = U𝜼U†, onto the cone of
positive semidefinite matrices. It is equal to [31, Theorem 2.1]:

[S]ર0 = Udiag (max {𝜂1, 0} , ⋅ ⋅ ⋅ ,max {𝜂𝑚, 0})U†. (30)

ii) Obtain the gradient of ℒ𝛼 (⋅) with respect to a single A𝑛,
which is twice the conjugate of the partial derivative of the
function with respect to such a matrix [19]:

∇A𝑛ℒ𝛼 (A1:𝑁 , 𝜆) = 2

([
∂ℒ𝛼 (A1:𝑁 , 𝜆)

∂A𝑛

]𝑇)†
(31)

The Lagrangian is defined in (26). To obtain its partial
derivative, we make use of (57):[

∂ log det
(
I+ diag (A1:𝑁 )RY1:𝑁 ∣Y0

)
∂A𝑛

]𝑇
(32)

=

⎡
⎣∂ log det

(
I+A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛

)
∂A𝑛

⎤
⎦
𝑇

= RY𝑛∣Y0,Ŷ𝑐
𝑛

(
I+A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛

)−1

.

The conditional covariance is computed in Appendix A-B.
Furthermore, we can also derive that

∂𝑅1

∂A𝑛
=

∂𝐼
(
X1;Y0, Ŷ1:𝑁 ∣X2

)
∂A𝑛

(33)

=
∂𝐼
(
X1; Ŷ𝑛∣X2,Y0, Ŷ

𝑐
𝑛

)
∂A𝑛

where second equality follows from the chain rule for mutual
information and noting that 𝐼

(
X1;Y0, Ŷ

𝑐
𝑛∣X2

)
does not

depend on A𝑛. The mutual information above is evaluated
as:

𝐼
(
X1; Ŷ𝑛∣X2,Y0, Ŷ

𝑐
𝑛

)
(34)

= 𝐻
(
Ŷ𝑛∣X2,Y0, Ŷ

𝑐
𝑛

)
−𝐻

(
Ŷ𝑛∣X1,X2,Y0, Ŷ

𝑐
𝑛

)
= log det

(
RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
+Φ𝑛

)
− log det

(
𝜎2
𝑟I+Φ𝑛

)
= log det

(
A𝑛RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
+ I
)
− log det

(
A𝑛𝜎

2
𝑟 + I

)
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Last equality follows from Φ𝑛 = A−1
𝑛 , and RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
is

computed in Appendix A-B. Therefore, the derivative of 𝑅1

remains [19][
∂𝑅1

∂A𝑛

]𝑇
= RY𝑛∣X2,Y0,Ŷ𝑐

𝑛

(
A𝑛RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
+ I
)−1

−𝜎2
𝑟

(
A𝑛𝜎

2
𝑟 + I

)−1
. (35)

Equivalently, we can obtain for the derivative of 𝑅2 that

∂𝑅2

∂A𝑛
=

∂𝐼
(
X2;Y0, Ŷ1:𝑁

)
∂A𝑛

(36)

=
∂𝐼
(
X2; Ŷ𝑛∣Y0, Ŷ

𝑐
𝑛

)
∂A𝑛

.

Where we evaluate:

𝐼
(
X2; Ŷ𝑛∣Y0, Ŷ

𝑐
𝑛

)
(37)

= 𝐻
(
Ŷ𝑛∣Y0, Ŷ

𝑐
𝑛

)
−𝐻

(
Ŷ𝑛∣X2,Y0, Ŷ

𝑐
𝑛

)
= log det

(
A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛
+ I
)

− log det
(
A𝑛RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
+ I
)

Conditional covariances are obtained in Appendix A-B. The
derivative of 𝑅2 thus remains:[
∂𝑅2

∂A𝑛

]𝑇
= RY𝑛∣Y0,Ŷ𝑐

𝑛

(
A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛
+ I
)−1

(38)

−RY𝑛∣X2,Y0,Ŷ𝑐
𝑛

(
A𝑛RY𝑛∣X2,Y0,Ŷ𝑐

𝑛
+ I
)−1

.

Plugging (32), (35) and (38) into (31) we obtain the gradient
of the function. The gradient can be shown to be Hermitian
by a straightforward application of Lemma 3 below and,
therefore, the projection defined by (30) holds.

Lemma 3: Let A,B be Hermitian matrices, with B non-
singular. Then B (I+AB)

−1 is Hermitian.
Proof: It is straightforward since B (I+AB)

−1
=(

B−1 +A
)−1

and the sum and inverse of Hermitian matrices
is an Hermitian matrix.

The gradient is then used in the GP algorithm to obtain
𝑔𝛼 (𝜆). Notice that for 𝛼 ≤ 1

2 , the roles of users 𝑠1 and
𝑠2 are interchanged, being user 1 decoded first. These roles
would also need to be interchanged in the computation of the
gradients of 𝑅1 and 𝑅2. Once obtained the dual function, we
minimize it:

ℛ (𝛼) = min
𝜆≥0

𝑔𝛼 (𝜆) . (39)

To solve this minimization, we use the subgradient approach
as in Section IV. Taking all this into account we build up
Algorithm 3. As for the previous section, we can only claim
local convergence.

VI. NUMERICAL RESULTS

We evaluate the performance of D-WZ coding within a
realistic single-frequency network, composed of a central base
station BS0 plus its first tier of six cells. The radius of each
cell is 700 m, and BSs have all three receive antennas. On the
transmit side, users have two antennas and are located at the

Algorithm 3 Two-user WSR dual problem

1: Initialize 𝜆min = 0 and 𝜆max

2: repeat
3: 𝜆 = 𝜆max−𝜆min

2
4: Obtain {A∗

1:𝑁} = argmaxℒ𝛼 (A1:𝑁 , 𝜆) from Algo-
rithm 4

5: Evaluate ℎ (𝜆) as in (19), where RY1:𝑁 ∣Y0
follows

Appendix A-B.
6: if ℎ (𝜆) ≤ 0, then 𝜆min = 𝜆, else 𝜆max = 𝜆
7: until 𝜆max − 𝜆min ≤ 𝜖
8: ℛ (𝛼) = 𝛼𝑅1 (A

∗
1:𝑁 ) + (1− 𝛼)𝑅2 (A

∗
1:𝑁 ).

Algorithm 4 GP to obtain 𝑔𝛼 (𝜆)

1: Initialize A0
𝑛 = 0, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 and 𝑡 = 0

2: repeat
3: Compute the gradient G𝑡

𝑛 = ∇A𝑛ℒ𝛼 (𝜆,A𝑡
1:𝑁 ), 𝑛 =

1, ⋅ ⋅ ⋅ , 𝑁 from (31).
4: Choose appropriate 𝑠𝑡
5: Set Â𝑡

𝑛 = A𝑡
𝑛 + 𝑠𝑡 ⋅G𝑡

𝑛.
6: Eigen-decompose Â𝑡

𝑛 = U𝑛𝜼U
†
𝑛, and set Ā𝑡

𝑛 =
U𝑛 max {𝜼, 0}U†

𝑛, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 .
7: Choose appropriate 𝛾𝑡
8: Update A𝑡+1

𝑛 = A𝑡
𝑛 + 𝛾𝑡

(
Ā𝑡

𝑛 −A𝑡
𝑛

)
, 𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁

9: 𝑡 = 𝑡+ 1
10: until The sequence converges {A𝑡

1:𝑁} → A∗
1:𝑁

11: Return {A∗
1, ⋅ ⋅ ⋅ ,A∗

𝑁}

edge of the central cell. Wireless channels are simulated taking
into account path loss, log-normal shadowing and Rayleigh
fading. Specifically, fading is assumed i.i.d. among antennas,
and shadowing uncorrelated among BSs. Two propagation
scenarios are studied: i) Line-of-sight (LOS), with path-loss
exponent 𝛼 = 2.6 and shadowing standard deviation 𝛽 = 4
dB, and ii) Non Line-of-sight (N-LOS), with 𝛼 = 4.05 and
𝛽 = 10 dB. Channel matrices thus follow

H𝑠,𝑖 =

(
1

𝑑𝑠,𝑖

)𝛼
2

⋅
√
ℎ𝑠ℎ ⋅H𝑖

𝑚𝑝. (40)

where 10 log10 (ℎ𝑠ℎ) ∼ 𝒩 (0, 𝛽2
)

and
[
H𝑖

𝑚𝑝

]
𝑟,𝑐

∼ 𝒞𝒩 (0, 1).

Users transmit isotropically (i.e. Q𝑖 = P𝑇𝑋

2 I) with a trans-
mitted power P𝑇𝑋 = 23 dBm. Their symbol rate is set to
1 Msymb/s, occupying a total bandwidth 𝐵 = 1 MHz. Base
stations have a Noise Figure 𝐹 = 4 dB. Therefore, the noise
power at the receivers is 𝜎2

𝑟 = 𝑘 ⋅ 𝑇𝑜 ⋅ 𝐵 ⋅ 𝐹 , with 𝑘 the
Boltzmann constant and 𝑇0 = 290 K.

Fig. 1 plots the cumulative density function (cdf) of the
uplink rate for a single-user network, considering different
values of the backhaul rate R [Mbit/s]6. In particular, Fig.
1(a) depicts results for LOS propagation, and shows gains
up to 6 Mbit/s @ 5% probability, with R = 15 Mbit/s. It is
clearly shown that BSs cooperation becomes more remarkable
for lower probabilities. On the other hand, Fig. 1(b) shows
results for N-LOS propagation, where rate gains are reduced.

6Throughout the paper, the backhaul rate has been measured in
[bits/symbol]. Its translation into [bit/s] is trivial by noting that the symbol
rate is 1 Msymb/s.
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Fig. 1. Single user capacity results for different values of the backhaul rate
R. BS1, ⋅ ⋅ ⋅ ,BS6 cooperate with BS0.

In this case, cooperation becomes more convenient for higher
probabilities, showing that @ 50%, three-fold gains arise with
15 Mbit/s of backhaul.

Fig 2 plots the uplink rate of a single-user network with
R = 7 Mbit/s, for different number 𝑁 of cooperative BSs.
First, Fig. 2(a) depicts the cdf of the user’s rate under LOS
propagation conditions. We notice that @ 5%, with only 1
cooperative BS, a rate gain of 2 Mbit/s is obtained with respect
to the non-cooperative case. However, when increasing the
number of cooperative BSs to 6, only an additional rate gain
of 2 Mbit/s is obtained. That is, the impact of introducing
new cooperative BSs in the system diminishes as the network
grows. Again, cooperation is more useful for low probabilities.
On the other hand, Fig. 2(b) depicts results for N-LOS propa-
gation. It can be shown that, @ 50%, the rate is doubled from
1 cooperative BS to 6 cooperative BS. This fact highlights the
relevant role of macro-diversity on N-LOS conditions, which
are most common ones on urban cellular networks. Next, Fig.
3 compares the rate performance of our D-WZ approach with
respect to that of Quantization [8], assuming LOS propagation.
We consider a simple network with two BSs: BS0 and BS1,
and plot its outage capacity with D-WZ and with uniform
quantization, respectively. Both are normalized with respect to
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Fig. 2. Single user capacity results, for different number of Cooperative BS,
𝑁 . Backhaul rate R = 7 Mbit/s.

the outage capacity with infinite backhaul and computed at a
probability of outage of 10−2. Results show significant gains,
of up to 12%, for low backhaul rates, and highlights the fact
that D-WZ requires half of backhaul rate than Quantization
to converge to the ∞ backhaul capacity.

Fig 4 depicts the expected sum-rate of the multi-user setup
versus the total number of users. Expectation is taken over the
joint channel distribution via Monte-Carlo. Results are shown
for different values of the backhaul rate. Although the sum-
rate analysis (see Sec. V-B) was carried out for two users only,
the extension to 𝑈 > 2 is straightforward. Fig 4(a) depicts
the sum-rate for LOS propagation. We first notice that the
sum rate with ∞ backhaul (i.e., outer region 1) is far lower
than that with D-WZ compression. This is explained by means
of outer region 2: the sum-rate of the system is constrained
by the available rate at the backhaul network. On the other
hand, for N-LOS propagation (Fig. 4(b)), upper bound 2 is not
reached. Indeed, for less than 5 users, the expected sum-rate
with only R = 15 Mbit/s of backhaul is almost identical to that
of R = ∞. Therefore, for practical number of transmitters, the
full rate gain due to macro-diversity is obtained via D-WZ
compression. Finally, Fig. 5(a) and Fig. 5(b) depict the rate
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Fig. 3. Outage Capacity with D-WZ and with Quantization, respectively,
versus the backhaul rate R. LOS.

region of a 2-user network, with and without LOS respectively,
for different values of the backhaul rate R. It is shown that
the region is significantly enlarged.

VII. CONCLUSIONS

In this paper, Distributed Wyner-Ziv coding has been pro-
posed as an effective means to deploy receive cooperation
among the BSs of a single-frequency network. This aims at
both increasing the network capacity and the achievable sum-
rate/backhaul rate tradeoff of coordinated networks. Consider-
ing MIMO BSs, the application of such a coding gave rise to a
compression noise covariance optimization. The optimization
was solved in this paper for a single user and multiple users,
respectively. Significant capacity gains were shown, much
greater than those of the distributed quantization which does
not exploit signal correlation [8].

APPENDIX A

We present conditional covariances used along the paper.

A. The single user case

RY𝑛∣Y0
= H𝑠,𝑛

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0

)−1

QH†
𝑠,𝑛 + 𝜎2

𝑟I (41)

RY1:𝑁 ∣Y0
=

⎡
⎢⎣

H𝑠,1

...
H𝑠,𝑁

⎤
⎥⎦(I+ Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0

)−1

(42)

×Q

⎡
⎢⎣

H𝑠,1

...
H𝑠,𝑁

⎤
⎥⎦
†

+ 𝜎2
𝑟I

RY𝑛∣Y0,Ŷ𝑐
𝑛
= H𝑠,𝑛

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 (43)

+
∑
𝑗 ∕=𝑛

QH†
𝑠,𝑗

(
𝜎2
𝑟I+Φ𝑗

)−1
H𝑠,𝑗

⎞
⎠

−1

QH†
𝑠,𝑛 + 𝜎2

𝑟I.
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Fig. 4. Sum-rate versus number of users. BS1, ⋅ ⋅ ⋅ ,BS6 cooperate.

RY𝑛∣Y0,Ŷ𝒢 = H𝑠,𝑛

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 (44)

+
∑
𝑗∈𝒢

QH†
𝑠,𝑗

(
𝜎2
𝑟I+Φ𝑗

)−1
H𝑠,𝑗

⎞
⎠

−1

QH†
𝑠,𝑛 + 𝜎2

𝑟I

B. The multiuser case

Define H𝑠,𝑛 = [H1,𝑛,H2,𝑛] and Q = diag (Q1,Q2).
Then, Conditional covariances RY𝑛∣Y0

, RY1:𝑁 ∣Y0

RY𝑛∣Y0,Ŷ𝑐
𝑛

and RY𝑛∣Y0,Ŷ𝒢 follow Subsection A-A.
Furthermore, let 𝑖, 𝑗 ∈ {1, 2} with 𝑗 ∕= 𝑖, then:

RY𝑛∣X𝑖,Y0,Ŷ𝑐
𝑛
= H𝑗,𝑛

(
I+

Q𝑗

𝜎2
𝑟

H†
𝑗,0H𝑗,0 (45)

+
∑
𝑝 ∕=𝑛

Q𝑗H
†
𝑗,𝑝

(
𝜎2
𝑟I+Φ𝑝

)−1
H𝑗,𝑝

⎞
⎠

−1

Q𝑗H
†
𝑗,𝑛 + 𝜎2

𝑟I

APPENDIX B

In this Appendix, we solve the non-convex optimization (7).
Let us first expand:
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Fig. 5. Rate region for different values of R. BS1, ⋅ ⋅ ⋅ ,BS6 cooperate with
BS0.

log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 +QH†

𝑠,1

(
A1𝜎

2
𝑟 + I

)−1
A1H𝑠,1

)
(46)

= log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0

)

+ log det
(
I+

(
A1𝜎

2
𝑟 + I

)−1
A1

(
RY1∣Y0

− 𝜎2
𝑟I
))

= log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0

)
+ log det

(
I+A1RY1∣Y0

)− log det
(
I+A1𝜎

2
𝑟

)
.

First equality follows from the value of RY1∣Y0
in (41).

Notice that log det
(
I+ Q

𝜎2
𝑟
H†

𝑠,0H𝑠,0

)
does not depend on

A1. Therefore, the Lagrangian for the problem can be written
as

ℒ (A1, 𝜆,Υ) = (1− 𝜆) log det
(
I+A1RY1∣Y0

)
(47)

− log det
(
I+A1𝜎

2
𝑟

)
+ 𝜆R− tr {ΥA1} ,

where 𝜆 is the Lagrange multiplier for the explicit constraint
and Υ ⪯ 0 for the semidefinite positiveness constraint. The
derivative of the Lagrangian with respect to A1 thus reads

[19]:[
∂ℒ
∂A1

]𝑇
= (1− 𝜆)RY1∣Y0

(
I+A1RY1∣Y0

)−1
(48)

−𝜎2
𝑟

(
I+A1𝜎

2
𝑟

)−1 −Υ.

Accordingly, the KKT conditions for the problem, which are
necessary but not sufficient, are:

i)

[
∂ℒ
∂A1

]𝑇
= 0 (49)

ii) 𝜆
(
log det

(
I+A1RY1∣Y0

)− R
)
= 0

iii) tr {ΥA1} = 0.

Let now the eigen-decomposition RY1∣Y0
= USU†.

Then, it can be readily shown that matrix A∗
1 =

Udiag (𝜂1, ⋅ ⋅ ⋅ , 𝜂𝑀1)U
†, where

𝜂𝑗 =

[
1

𝜆∗

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

]+
, (50)

satisfies the KKT conditions, with multiplier 𝜆∗ such that∑𝑀1

𝑗=1 log (1 + 𝜂𝑗𝑠𝑗) = R (therefore, 𝜆∗ < 1), and multiplier
Υ∗ ⪯ 0 computed from i). Let now show that A∗

1 satisfies
also the general sufficiency condition for optimality, which is
presented in the next Lemma.

Lemma 4: [18, Proposition 3.3.4] Let the
maximization (7). Consider a pair (A∗

1, 𝜆
∗) for which

𝜆∗
(
log det

(
I+A∗

1RY1∣Y0

)− R
)

= 0. Then, A∗
1 is the

global maximum of (7) if:

A∗
1 ∈ arg max

A1ર0
ℒ (A1, 𝜆

∗) , (51)

where the Lagrangian7 has been defined in (47).
Lemma 5: Let A,B ર 0, with ordered eigenvalues

Γ𝐴,Γ𝐵 respectively. Then,

log det (I+AB) ≤ log det (I+ Γ𝐴Γ𝐵) , (52)

with equality whenever A and B have conjugate transpose
eigenvectors.

Proof: It is known that log det (I+AB) =
log det (I+ Γ𝐴𝐵), where Γ𝐴𝐵 are the ordered eigenvalues
of AB. Those eigenvalues are logarithmically majorized [32,
Definition 1.4] by the product of the separate eigenvalues
of A and B, i.e., Γ𝐴𝐵 ≺× Γ𝐴Γ𝐵 [33, Theorem 9.H.1.d].
Let now the function 𝑓 (X) = log det (I+X) be defined
on the set of semi-definite positive diagonal matrices, i.e.,
𝑓 (X) =

∑
log (1 + 𝑥𝑖). We may apply [32, Theorem

1.6] to prove that 𝑓 (X) is a Schur-geometrically-convex
function. Accordingly, provided that Γ𝐴𝐵 ≺× Γ𝐴Γ𝐵 , then
log det (I+ Γ𝐴𝐵) ≤ log det (I+ Γ𝐴Γ𝐵), which concludes
the proof.

Let us prove now that our pair (A∗
1, 𝜆

∗) satisfies (51). The
Lagrangian is defined for the problem as

ℒ (A1, 𝜆
∗) = (1− 𝜆∗) log det

(
I+A1RY1∣Y0

)
(53)

− log det
(
I+A1𝜎

2
𝑟

)
+ 𝜆∗R.

7Notice that multiplier Υ has been removed of the Lagrangian by con-
straining the maximization (51) to A1 ર 0.
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Recall that 𝜆∗ < 1 and RY1∣Y0
= USU†. Then, using

Lemma 5 we can bound:

max
A1ર0

ℒ (A1, 𝜆
∗) ≤ max

𝜼ર0
(1− 𝜆∗) log det (I+ 𝜼S)

− log det
(
I+ 𝜼𝜎2

𝑟

)
+ 𝜆∗R

= 𝜆∗R +

𝑀1∑
𝑗=1

max
𝜂𝑗≥0

(1− 𝜆∗) log (1 + 𝜂𝑗𝑠𝑗)

− log
(
1 + 𝜂𝑗𝜎

2
𝑟

)
(54)

where 𝜼 is the diagonal matrix of ordered eigenvalues of
A1. The individual maximizations on 𝜂𝑗 in (54) are not
concave. However, the continuously differentiable functions
𝑓𝑗 (𝜂𝑗) = (1− 𝜆∗) log (1 + 𝜂𝑗𝑠𝑗)− log

(
1 + 𝜂𝑗𝜎

2
𝑟

)
have only

one stationary point, namely:

𝑑𝑓𝑗
𝑑𝜂𝑗

= 0 → 𝜂∗𝑗 =
1

𝜆∗

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

. (55)

For the stationary point, we can prove that its second derivative
exists and is lower than zero; accordingly, it is a local
maximum of the function, unique because there is no other.
Moreover, it is easy to obtain that: i) 𝑓𝑗 (0) = 0, and ii) since
𝜆 < 1, then lim𝜂𝑗→∞ 𝑓𝑗 (𝜂𝑗) = −∞. That is, 𝜂𝑗 = ∞ is the
global minimum of the problem. Making use of i) and ii), we
can claim that the local maximum 𝜂∗𝑗 is the global maximum.
However, we restricted the optimization to the values 𝜂𝑗 ≥ 0.
Hence, functions 𝑓𝑗 (𝜂𝑗) take maximum at:

𝜂∗𝑗 =

[
1

𝜆∗

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

]+
. (56)

Plugging these optimal values into (54), we bound

max
A1ર0

ℒ (A1, 𝜆
∗) ≤ 𝜆∗R+ (1− 𝜆∗)

𝑀1∑
𝑗=1

log
(
1 + 𝜂∗𝑗 𝑠𝑗

)

−
𝑀1∑
𝑖=1

log
(
1 + 𝜂∗𝑗𝜎

2
𝑟

)

Nevertheless, notice that for A∗
1 = U𝜼∗U†:

ℒ (A∗
1, 𝜆

∗) = 𝜆∗R+ (1− 𝜆∗)
𝑀1∑
𝑗=1

log
(
1 + 𝜂∗𝑗 𝑠𝑗

)

−
𝑀1∑
𝑖=1

log
(
1 + 𝜂∗𝑗𝜎

2
𝑟

)
.

Then, it is demonstrated that A∗
1 = argmaxA1ર0 ℒ (A1, 𝜆

∗).
Hence, the general sufficient condition holds, and it is opti-
mum. Finally, Φ∗

1 = (A∗
1)

−1, which concludes the proof.

APPENDIX C

A. Proof of Theorem 2

In this Appendix, we solve the non-convex optimiza-
tion A∗

𝑛 = argmaxA𝑛ર0 ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆). First, recall
that log det

(
I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑁 )RY1:𝑁 ∣Y0

)
is equal to

𝐼
(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
(as shown in the proof of Proposition

1, changing Φ𝑛 = A−1
𝑛 ∀ 𝑛). Then:

log det
(
I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑁 )RY1:𝑁 ∣Y0

)
(57)

= 𝐼
(
Y1:𝑁 ; Ŷ1:𝑁 ∣Y0

)
= 𝐼

(
Y1:𝑁 ; Ŷ𝑐

𝑛∣Y0

)
+ 𝐼

(
Y1:𝑁 ; Ŷ𝑛∣Y0, Ŷ

𝑐
𝑛

)
= 𝐼

(
Y𝑐

𝑛; Ŷ
𝑐
𝑛∣Y0

)
+ 𝐼

(
Y𝑛; Ŷ𝑛∣Y0, Ŷ

𝑐
𝑛

)
= log det

(
I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑛−1,A𝑛+1, ⋅ ⋅ ⋅ ,A𝑁)RY𝑐

𝑛∣Y0

)
+ log det

(
I+A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛

)
where second equality follows from the chain rule for mutual
information, and the third from the Markov chain in the proof
Proposition 1. Finally, the fourth equality evaluates the mutual
information as in (5), with Φ𝑛 = A−1

𝑛 . The conditional
covariances are computed in Appendix A. Later, using (43)
and equivalently to (46):

log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 +Q

𝑁∑
𝑛=1

H†
𝑠,𝑛

(
A𝑛𝜎

2
𝑟 + I

)−1
A𝑛H𝑠,𝑛

)

= log det

⎛
⎝I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0 +Q

∑
𝑗 ∕=𝑛

H†
𝑠,𝑗

(
A𝑗𝜎

2
𝑟 + I

)−1
A𝑗H𝑠,𝑗

⎞
⎠

+ log det
(
I+A𝑛RY𝑛∣Ŷ𝑐

𝑛,Y0

)
− log det

(
I+A𝑛𝜎

2
𝑟

)
.

Therefore, plugging last equality along with (58) into (12),
we can expand the function under study as:

ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) = log det

(
I+

Q

𝜎2
𝑟

H†
𝑠,0H𝑠,0+

Q
𝑁∑

𝑗 ∕=𝑛

H†
𝑠,𝑗

(
A𝑗𝜎

2
𝑟 + I

)−1
A𝑗H𝑠,𝑗

⎞
⎠

+ log det
(
I+A𝑛RY𝑛∣Ŷ𝑐

𝑛,Y0

)
− log det

(
I+A𝑛𝜎

2
𝑟

)
−𝜆
(
log det

(
I+ diag (A1, ⋅ ⋅ ⋅ ,A𝑛−1,A𝑛+1, ⋅ ⋅ ⋅ ,A𝑁 )RY𝑐

𝑛∣Y0

)
+ log det

(
I+A𝑛RY𝑛∣Ŷ𝑐

𝑛,Y0

)
− R

)
In order to obtain A∗

𝑛 = argmaxA𝑛ર0 ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆),
we first notice that the following Lagrangian

ℒ̄ (A𝑛, 𝜆) = (1− 𝜆) log det
(
I+A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛

)
− log det

(
I+A𝑛𝜎

2
𝑟

)
+ 𝜆R

satisfies argmaxA𝑛ર0 ℒ̄ (A𝑛, 𝜆) =
argmaxA𝑛ર0 ℒ (A1:𝑁 , 𝜆), and it is identical to the
Lagrangian in (53). Therefore, we can directly apply
derivation (53)-(57) to solve it:

Consider first 𝜆 ≥ 1. For it, and ∀A𝑛 ર 0:

(1− 𝜆) log det
(
I+A𝑛RY𝑛∣Y0,Ŷ𝑐

𝑛

)
− log det

(
I+A𝑛𝜎

2
𝑟

) ≤ 0 (58)

Therefore, it is readily shown that:

0 = arg max
A𝑛ર0

ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) for 𝜆 ≥ 1. (59)

Let now 𝜆 < 1. Applying (53)-(57) we show that

U𝑛𝜼U
†
𝑛 = arg max

A𝑛ર0
ℒ (A1, ⋅ ⋅ ⋅ ,A𝑁 , 𝜆) (60)
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with RY𝑛∣Y0,Ŷ𝑐
𝑛
= U𝑛SU

†
𝑛, and

𝜂𝑗 =

[
1

𝜆

(
1

𝜎2
𝑟

− 1

𝑠𝑗

)
− 1

𝜎2
𝑟

]+
, 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑀𝑛. (61)

B. Solution of (14) with 𝜆 ≥ 1

Applying equivalent arguments to those in (46), we can
rewrite the Lagrangian in (14) as:

ℒ (A1:𝑁 , 𝜆) = (1− 𝜆) log det
(
I+ diag (A1:𝑁 )RY1:𝑁 ∣Y0

)
− log det

(
I+ diag (A1:𝑁 )𝜎2

𝑟

)− 𝜆R,

It is clear that, for 𝜆 ≥ 1, the Lagrangian takes its optimal
value at {A∗

1, ⋅ ⋅ ⋅ ,A∗
𝑁} = 0.
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[28] R. G. Cheng and S. Verdú, “Gaussian multiple-access channels with
ISI: capacity region and multi-user water-filling,” IEEE Trans. Inform.
Theory, vol. 39, no. 3, pp. 773–785, May 1993.

[29] S. Ye and R. S. Blum, “Optimized signaling for MIMO interference
systems with feedback,” IEEE Trans. Signal Processing, vol. 51, no.
11, pp. 2839–2847, Nov. 2003.

[30] J. Liu, Y. T. Hou, and H. D. Sherali, “Conjugate gradient projection
approach for multi-antenna Gaussian broadcast channels,” in Proc.
IEEE International Symposium on Information Theory, Nice, France,
June 2007.

[31] J. Malick and H. S. Sendov, “Clarke generalized Jacobian of the
projection onto the cone of positive semidefinite matrices,” Springer
Set-Valued Analysis, vol. 14, no. 3, pp. 273–293, Sept. 2006.

[32] K. Guan, “Some properties of a class of symmetric functions,” J. Math.
Anal. and Appl., vol. 336, pp. 70–80, 2007.

[33] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and
Its Applications. Academic Press, 1979.

Aitor del Coso (Madrid, 1980) received M.Sc.
degree in Telecommunications from Universidad
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