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Summary 

Early works on the capacity of the wireless relay channel date back more than 30 

years. In its genuine version this channel consists of three nodes: a source transmits data 

to a destination with the help of a relay. In the Information Theory community, various 

coding strategies have been proposed and their achievable rates have been derived for the 

three-node relay channel and its extensions to multiple relays, multiple sources and 

destinations. In the Signal Processing and Wireless Communications community, various 

questions related to the implementation and performance of relaying have been 

addressed, such the diversity and multiplexing characteristics of the relay channel, 

distributed space-time coding, linear processing at the source, relay and destination, 

…etc.  

Recently, the topic of cooperative relaying has received a lot of attention in the 

academia and in the industry. Cooperative relaying refers to the fact that advanced coding 

strategies for the relay channel involve the distribution of coding and decoding functions 

at several nodes which cooperate in order to maximize the achievable rate between the 

source(s) and the destination(s). The recent interest in cooperative relaying and 

cooperative communications in general is motivated by the explosion of wireless internet 

traffic and can be summarized by the following question: can cooperative relaying 

substancially increase the spectral efficiency of future Broadband Wireless Access  

(BWA) networks? 

In this thesis, we do not pretend to provide a final answer to this question, but at 

least we try to contribute on several aspects. The first one is the derivation of capacity 

bounds for the Multiple Input Multiple Output (MIMO) relay channel with full Channel 

State Information (CSI), i.e. in the case when all devices are equipped with multiple-

antennas and have the capability to exploit channel knowledge at the transmitter side. We 

propose source and relay precoder optimization procedures which allow the efficient 

computation of the Cut Set Bound and of achievable rates for the Decode-and-Forward 

(DF), Compress-and-Forward (CF), and for the more recent distributed CF coding 

schemes. In a second part of the thesis, we try to exploit these new information-theoretic 

bounds in order to predict the throughput performance of future BWA networks. We 

review several implementation-related constraints at the device and link levels 

(duplexing, broadband transmission, practical modulation and coding, power constraints, 
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imperfect CSI, …etc), and also at system-level (deployment topology, macroscopic 

propagation effects, interference). We analyze their effect analytically and/or by 

simulations and investigate how capacity bounds can be modified to model them. 
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Resumen 

Los primeros trabajos sobre la capacidad del canal de relay (repetidor) inalámbrico 

datan de hace más de 30 años. En su versión básica el canal de relay consta de tres nodos: 

una fuente transmite datos a un destino con ayuda de un repetidor. En el seno de la 

comunidad de Teoría de la Información se han propuesto varias estrategias de 

codificación y se ha calculado su tasa de transmisión alcanzable para el canal básico de 

tres nodos y sus extensiones a múltiples repetidores, fuentes y destinos. Por otra parte, en 

el seno de la comunidad de Comunicaciones Inalámbricas y Procesado de Señal se ha 

intentado dar respuesta a varias cuestiones relativas a la implementación y prestaciones 

de los esquemas basados en repetidores, tales como las características de diversidad y 

multiplexado del canal de relay, esquemas de codificación espacio-tiempo distribuida, 

procesado lineal en la fuente, el repetidor y el destino, etc.  

Recientemente el tema de repetidores cooperativos ha recibido gran atención por 

parte del entorno académico y también industrial. La retransmisión cooperativa se basa en 

estrategias avanzadas de codificación para el canal de relay. Estas estrategias implican la 

distribución de las funciones de codificación y decodificación en los nodos que cooperan 

con el fin de maximizar la tasa de transmisión entre la fuente(s) y el destino(s). El 

reciente interés en repetidores cooperativos y comunicaciones cooperativas en general 

viene motivado por la explosión del tráfico de internet inalámbrico y puede resumirse en 

la siguiente cuestión: ¿pueden los repetidores cooperativos incrementar sustancialmente 

la eficiencia espectral de las futuras redes de acceso inalámbrico de banda ancha, 

Broadband Wireless Access (BWA)? 

 En esta tesis no se pretende dar una respuesta definitiva a esta cuestión, pero sí 

contribuir en varios aspectos. El primero de ellos es la obtención de cotas para la 

capacidad del canal de relay con múltiples entradas y múltiples salidas, Multiple Input 

Multiple Output (MIMO), y con total información del estado del canal, Channel State 

Information (CSI), es decir, en el caso en el que todos los dispositivos están equipados 

con múltiples antenas y disponen de la capacidad de explotar el conocimiento del canal 

en el transmisor. En la tesis se proponen procedimientos de optimización para el pre-

codificador de la fuente y del repetidor que permiten calcular de forma eficiente la 

denominada Cut Set Bound y las tasas de transmisión alcanzables para los esquemas 

Decode-and-Forward (DF), Compress-and-Forward (CF) y los esquemas de codificación 

CF distribuidos más recientes. En la segunda parte de la tesis, estas nuevas cotas basadas 
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en teoría de la información se explotan con el objetivo de predecir las prestaciones en 

términos de throughput de las futuras redes BWA. En la tesis se revisan varias 

restricciones relativas a la implementación a nivel de dispositivo y de enlace (duplexado, 

transmisión de banda ancha, modulación y codificación práctica, restricciones de 

potencia, CSI imperfecta, etc.), y también a nivel de sistema (topología de despliegue, 

efectos de propagación macroscópicos, interferencia). Se analiza su efecto analíticamente 

y/o mediante simulaciones y se investiga como modificar las cotas de la capacidad para 

modelarlas. 
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MATHEMATICAL NOTATION 

{ }1, , \N G…  Sequence of integers ranging from 1 to N excluding those in the set G  

{ }
1

N

ia   Sequence of vectors 
i

a  for index i ranging from 1 to N. 

,A B   Inner product for complex vectors and matrices equal to ( )tr HA B  

( )+
 Operator which returns ( )max ,0a a+ =  if a ∈� and ( )1 ,..., Na a+ ++ =a  

if  N∈a �  

( ). T
, ( )*

. , ( ). H
 Transpose, Conjugate and Hermitian-transpose operators 

≥  Component-wise ordering ( ≥a b  means that each component of −a b  

is non-negative) 

�  Ordering on the Positive Semi-Definite cone ( A B� means that −A B  

is PSD) 

N P×0 , N0  Null matrices of respective size N P×  and N N×  

a , A   Scalars 

a   Column Vector 

1−a  Component-wise inversion  of a column vector ( )1 11
1 , ,

T

Na a− −−a � …  

where *
N∈a �  

A   Matrix 

( ),X HC  Given M

+
∈X S  and H  an N M×  complex matrix, 

( ) 2, log H
M +X H I HXHC �  represents the capacity of a point-to-

point MIMO channel with source covariance X , channel matrix H  and 

noise covariance MI . Note that the function ( ): ,f →X X HC  is 

concave in X . 

( )diag a  Operator which generates an N N×  diagonal matrix A  from a length-N 

column vector such that ,i i iA a=  

{ }( )1
diag

N

iA  Block-diagonal matrix created from the sequence of N matrices 
i

A . 

( );I x y z  Conditional Mutual Information between x  and y  given z . 

NI   Identity matrix of size N N×  

( )mat .  Operator which generates an N N× matrix A from a column-vector a  

such that ( ), 1i j j N iA a − +=  and ( )( )vec mat =a a  

*� , +� , ++�  Set of non-zero (resp. non-negative and strictly positive) real numbers 

k

+
S   Cone of Positive Semi-Definite matrices of size k k×  
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( )vec .  Operator which generates a column vector a  from a matrix A  by 

stacking the columns of A  by increasing column order. 
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Chapter 1: Introduction 

 

1.1 Motivation and previous work 

In my opinion, an important difference between research in the industry and 

academia is in the nature of questions that we are asked to solve. When I started to work 

on cooperative relaying and tried to convince my hierarchy that this was a technology to 

investigate, I was immediately asked how much spectral efficiency increase it could bring 

to future BWA systems and the question that came immediately after was whether a 

hybrid deployment of relays and Base Stations would reduce the cost of a cellular 

network for the same coverage and spectral efficiency? 

In order to address these definitely too ambitious questions, my battle plan was the 

following: I would rely on capacity bounds, because they were very successful in 

providing insight into the performance of point-to-point MIMO links (see e.g. 

[T99][TV05]). This good understanding of their performance supported their recent 

introduction into BWA and WLAN standards such as IEEE802.16e [16e05] and 802.11n 

[11n08]. The second step in my plan would be to insert link-level capacity bounds into a 

system-level simulator to take into account macroscopic effects such as interference and 

finally I could provide answers to my managers. However, I quickly realized that the 

capacity bounds for the relay channel published in the literature did not suit my needs: 

• The vast majority of these bounds (e.g. [LW04][GMZ06][HZ05]) were derived 

assuming single-antenna devices in a narrowband flat fading channel. However, 

state-of-the-art BWA systems in 2005 were already based on MIMO-OFDM 

broadband transmission, with at least two antennas at the BS and considering 

dual antenna handsets in a very near future. We found a few papers (e.g. 

[WZH05][LV05][MVA07]) deriving capacity bounds for the MIMO relay 

channel but for reasons explained in the next bullet they did not completely  

answer our problem. 

•  State-of-the-art systems are based on TDD or FDD duplexing, but again the 

majority of information-theoretic papers on the relay channel were assuming 

full-duplex operation (e.g. [WZH05][LVH05]). The few papers which 
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considered half-duplex relaying were either for the single-antenna case (e.g. 

[HZ05]) or for linear relaying (e.g. [MVA07]). Unfortunately, linear relaying is 

not spectrally efficient in half-duplex relaying (at least at the link-level) as 

explained in Chapter 2 and we wanted to investigate the performance of more 

spectrally efficient strategies such as Decode-and-Forward (DF) and Compress-

and-Forward (CF). 

• The optimization of capacity bounds for the MIMO relay channel with full CSI 

was still an open issue although it had been partially addressed in [WZH05] and 

[MVA07]. However, state-of-the-art BWA systems already had the capability 

to exploit CSI at the transmitter-side in order to do beamforming [16e05] or 

even to transmit multiple spatial streams by Singular Value Decomposition of 

the Channel (SVD-MIMO) [11n08]. 

We therefore decided to focus our initial efforts on the derivation of capacity bounds for 

the MIMO relay channel with full CSI, with a special emphasis on DF and CF strategies 

in the half-duplex case. 

 

During our investigations on CF for the MIMO relay channel, we realized that our 

work could be extended to the topic of Base Stations cooperation. This topic was only 

emerging at the time I started this thesis, but by the time I am finishing it seems to receive 

a lot of attention (see e.g. [GHS06][FKV06][MF07][SSS08]). The goal of BS 

cooperation, a.k.a. coordinated networks, is to jointly process the signals transmitted from  

or received at a group of BSs instead of a single BS, thus forming a large VAA [DDA02] 

and subsequently removing co-channel interference. The distributed compression 

framework on which we relied for our derivation of CF achievable rates could be applied 

to the compression of the received observations at a set of cooperative BSs. Just like in 

our studies on relaying, practical requirements helped us differentiate our contribution:  

• State-of-the-art BSs have multiple antennas. Therefore the rates derived in 

[SSS08] in the single-antenna Gaussian case are not directly applicable to our 

scenario. 

• The cellular backhaul rate is limited and cannot be assumed infinite. Therefore an 

efficient compression is needed. Although the backhaul assumptions considered 

in [MF07] were realistic-enough, they did not address the problem of reducing 

the backhaul rate by advanced compression techniques. 
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We therefore conducted a derivation of achievable rates with distributed compression for 

cooperative MIMO uplink under a backhaul rate constraint. 

 

The next step to take was to bridge theoretical capacity bounds with actual 

throughput simulations. In order to extend our MIMO bounds to the OFDM-MIMO case, 

we could rely on an approach similar to that of [BGP02] in which it is shown that OFDM-

MIMO capacity can be expressed as a sum of MIMO capacity terms. However, we also 

had to take into account various practical constraints: 

• There is a gap between an achievable rate with Gaussian signaling and an actual 

throughput with real-world modulation and coding. For this purpose, we tried to 

apply a modification of capacity formula similar to that of [CCB95], including an 

SNR degradation and a maximum bit rate limitation. We had to validate our 

modified capacity bounds by comparing them to actual throughput curves. To 

that aim, we studied a real implementation of cooperative relaying and predicted 

its throughput by the EESM methodology [E03] after validation by a link 

simulator compliant to a state-of-the-art BWA standard [16e05]. We knew that 

we could rely on EESM because it had been successfully applied to the reliability 

combining of codewords in [BSC04] and to MIMO-OFDM throughput prediction 

[SRS05]. 

• Though in a first step we could assume that perfect knowledge of all channels 

was available at each node, more realistic CSI asumptions have to be considered 

towards real implementation, including statistical and quantized CSI. A lot of 

attention has been paid to these topics for point-to-point MIMO (e.g. 

[JVG01][LHS03][LH05]) but the extension to cooperative MIMO relaying was 

(and remains) an open field of research. 

• Actual transmit power constraints in state-of-the-art systems often differ from the 

literature where a sum-power constraint is assumed over all transmitting devices 

or over all antennas of a transmitting device. We therefore ensured that our 

transmit precoder optimization procedures could include not only sum-power but 

also per-antenna power constraints, as well as spectral mask constraints for 

broadband OFDM transmission. 

Finally, the last step we had to take was to design a system-level simulator and to 

draw conclusions from simulations. Here, the main challenge was the complexity vs. 
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realism trade-off. A preliminary requirement was to find efficient computation procedures 

for our link-level capacity bounds. This forced us to come back to our link-level capacity 

bounds and apply advanced optimization techniques. We knew that we could rely on 

some strong references in the literature such as [B99] for non-linear programming, 

[BV04] for convex optimization, and also [HG07] for the computation of gradients in 

closed-form. We relied on even more recent tools kindly provided by the authors of 

[HP08] to exploit the structure of our matrices in order to further reduce the optimization 

complexity. At the system-level, one challenge was the large number of realizations of 

the shadowing over which we had to collect the throughput statistics for each possible 

user location. With the help of a colleague, we investigated how Quasi Monte-Carlo 

[S77] simulations could reduce the number of random variable trials without 

compromising the accuracy of our throughput estimates. 

 

1.2 Summary of contribution and organization of the dissertation 

In Chapter 2, we present the various assumptions which together make up the 

design and evaluation framework for this PhD thesis. After clarifying our notations, we 

review some theoretical background on relaying and cooperation. We introduce the cut-

set bound on capacity, motivate our focus on TDD relaying and present three TDD 

relaying protocols (I, II and III) as in [NBK04]. We then review coding strategies (DF, 

CF and LR) for the relay channel and provide their achievable rates on the Gaussian 

scalar relay channel. One original result in this chapter is the proof in §2.1.4.1.1 that 

superposition coding at the source cannot increase the achievable rate of DF relaying in 

TDD. We briefly review extensions of the classical one-way 3-node relay channel to 

handle multiple relays and multiple users, and we clarify the relationship between in-band 

relaying, out-of-band relaying and BS cooperation. Thereafter, we introduce our 

assumptions on radio device constraints (e.g. transmit power constraints) and radio 

propagation, to which our CSI assumptions are directly connected. Finally, we present the 

degraded capacity and EESM methods for throughput prediction. 

In Chapter 3, we derive capacity bounds for the one-way three-node Gaussian 

MIMO relay channel with full CSI. We show that the cut-set bound can be formulated in 

the full-duplex and TDD cases as a convex optimization problem, which yields a tighter 

capacity upper-bound than previously published in [WZH05]. We present efficient 
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procedures based on duality and interior point algorithms to compute it. We show that 

achievable rates for the DF strategies with either partial or full decoding at the relay can 

be computed by reusing the same convex optimization procedures as for the cut-set 

bound. We then design lower-complexity sub-optimum precoders with a specific 

structure for the source and relay. This design results in either a closed-form expression 

or a reduction of the problem dimensions at the expense of a slightly lower achievable 

rate. Finally, we perform a comparative analysis of the capacity bounds in a simulation 

scenario which matches as much as possible a cellular downlink case with fixed relaying. 

We show that thanks to full CSI large capacity gains can be achieved by cooperative 

beamforming, and we also observe that the partial DF strategy achieves a rate very close 

to capacity in this downlink scenario. The work in this chapter is published in [SMVC08], 

and extended in the submission [SMVC08b] by including the convex formulation in the 

TDD case, the use of patterned derivatives and a discussion on implementation 

constraints.  

 

In Chapter 4, we derive achievable rates for partial CF relaying on the three-node 

Gaussian MIMO relay channel with full CSI. The achievable rates are obtained in §4.2 by 

applying recent results on distributed compression of Gaussian sources 

[GDV04][GDV06] to the specific case of partial CF coding strategy of [HZ05]. The 

compression at the relay consists of a linear transform (the Conditional Karhunen Loeve 

Transform) followed by parallel Wyner-Ziv coding.  

• We analyze the effect of compression on the achievable rate of partial CF and derive 

a closed-form expression for the optimum Wyner-Ziv coding rates. We show that 

these rates differ from those of the rate-distortion trade-off derived in [GDV06]. 

• We show that an optimum decoding order exists for the messages transmitted by the 

Source and Relay, and this can be used to simplify the optimization of the source and 

relay covariance matrices. Finally, an iterative procedure is proposed (§4.2.3.3) 

which jointly optimizes the compression, the transmit covariance matrices and the 

time resource allocation. 

• Simulations are performed in both uplink and downlink cellular scenarios which 

illustrate the phenomena mentioned above and a comparison with other capacity 

bounds is performed (§4.2.4). 
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The first two bullet points are published in [SMV07], while the third bullet is included in 

the submission [SMVC08c]. 

 In §4.3 we apply a distributed Compress-and-Forward strategy to multiple 

parallel out-of-band multi-antenna relays or equivalently to a coordinated MIMO cellular 

network. Our work in §4.3 relies mainly on the distributed coding schemes of [DW04] 

and [SSS08], in which the signals received at each BS are partially decoded and 

compressed before being processed by a Central Procesing Unit. Our contribution 

essentially consists in a computation of achievable rates in the multiple antenna case: 

• In §4.3.1 we instanciate the results in [SSS08] for a Gaussian multiple-antenna 

setting with Gaussian codebook, and formulate the achievable rate as an 

optimization problem with respect to compression noise covariance matrices. In 

particular, we show that the problem is simplifed under a backhaul sum-rate 

constraint. 

• In §4.3.2 we show that the compression noise distribution which maximizes the 

achievable rate in the 3-node case corresponds to the Transform Coding approach 

introduced in [GDV04][GDV06] with the WZ coding rate allocation of [SMV07] 

that is derived in §4.2.3.1. 

• Achievable rates are derived in the case of multiple parallel relays in §4.3.3 and 

an achievable rate region in the multi-user case is derived in §4.3.4. 

• Finally, these theoretical results are illustrated by simulations under either per-

link or total backhaul rate constraints in §4.3.5. 

The above four bullets are the subject of several publications [CS08a][CS08b] and 

submissions [CS08c][CS08d]  

 

In Chapter 5, we review various issues which arise when a practical implementation 

of DF and CF is considered in a state-of-the-art broadband wireless access network such 

as IEEE802.16 [16j07][16m06]. Our contribution is the following: 

• In §5.2 we review the implementation of cooperative DF relaying.  

o First, we show that the capacity bounds that we derived in the previous 

chapters can be extended to model MIMO-OFDM transmission and various 

transmit power, modulation and coding constraints.  

o In §5.2.1.4 we study the effect of imperfect CSI. We propose some 

modifications to the achievable rate optimization problem in order to handle 
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the case of statistical CSI and we verify that quantized precoder codebooks 

can also be applied to cooperative relaying. 

o We conduct a detailed study of two practical implementations of cooperative 

DF Protocol I based on the convolutionally turbo-coded mode of 

IEEE802.16e.  

� The first implementation is a cooperative Incremental Redundancy 

strategy. We derive the parameters of an EESM error predictor for 

cooperative IR and compute its throughput performance under a 

target error rate. We verify that the throughput envelope can be well 

approximated by the degraded achievable rate which is obtained by 

simple modifications of the information-theoretic formulas of 

previous chapters. 

� However, the peak rate of cooperative IR may be limited if the set of 

MCS does not allow very high spectral efficiencies per modulation 

symbol. In such situations, we show that a strategy which performs 

superposition coding during the first slot of the TDD protocol can 

overcome the peak rate saturation problem. 

 

• In §5.3, we review some implementation constraints for the CF strategy. We show 

that as for DF, the capacity bounds can be extended to handle practical constraints 

such as MIMO-OFDM transmission. We also briefly describe how practical Wyner-

Ziv coding can be realized and what performance can be expected. 

 

• In §5.4 we conduct some system-level simulations to check whether the observations 

from link-level simulations can match practical deployment scenarios. We review the 

main simulation parameters and introduce the principle of Quasi Monte-Carlo 

simulations, before running some simulations in single-cell and multi-cell downlink 

scenarios to assess how cooperative DF strategies can increase the cellular 

throughput.  

o In the single-cell scenario we illustrate the effect of shadowing and relay 

density. We show that cooperative partial DF Protocol III is the most 

efficient and allows a large increase of achievable rate in the vicinity of the 

RS and at cell edge. When full CSI is available, even larger gains are 
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achievable by cooperative DF protocols II and III, as predicted by link-level 

simulations.  

o In the multi-cell scenario, we model additional effects such as inter-sector 

and inter-cell interference. We show that a careful positioning of RSs in the 

deployment is required if RSs cannot handle a connection to multiple BSs. 

We study the potential gains of non-orthogonal resource allocation with a 

spatial reuse of the relay time-frequency slot and show that it allows a large 

increase of spectral efficiency. Moreover, spatial reuse is possible with 

Protocol I but cannot be directly implemented with Protocol III. Therefore, 

Protocol I can be prefered in many cases at the system-level although it is 

outperformed by Protocol III at the link level. 

These system-level simulation results have been only partially published in 

[FIR07c] and [VLK07]. 
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Chapter 2: System Model and 

Relaying Strategies 

A huge amount of theoretical and practical work on relaying and cooperative 

transmission has been published since the early works by Van der Meulen [V71], Cover 

and El Gamal [CEG79]. In [KGG05], Kramer et al. review of past and recent 

information-theoretic work on the relay channel. In this chapter, we attempt to summarize 

the results that make the background for our investigations and we introduce and justify 

the various system assumptions which are made in this thesis. First, the landmark papers 

on coding strategies for the relay channel are introduced, which are the focus of 

subsequent chapters of this report. Some specific aspects related to relaying are then 

discussed: duplexing, multi-relay deployment, multi-user transmission. Some topics are 

also addressed which can be considered as borderline but are strongly connected to 

relaying such as out-of-band relaying and base stations cooperation. A quick application 

of the previously introduced concepts to the Gaussian SISO relay channel is then 

presented. Next, various assumptions related to the radio channel and devices are 

reviewed and finally we discuss how to bridge information-theoretic analysis with link-

level and system level actual performance. 

 

2.1 Theoretical background on relaying and cooperation 

The 3-node relay channel was introduced by Van der Meulen [V71], but we start 

our literature review with Cover and El Gamal’s landmark paper [CEG79] “Capacity 

theorems for the relay channel” which introduces most of the concepts that are used in 

subsequent studies on the so-called one-way relay channel. This channel involves three 

nodes: a source (S), a relay (R) and a Destination (D). The general coding problem at the 

source and at the relay aims at maximizing the information rate from S to D. Cover and 

El Gamal consider that devices are interconnected by a Discrete Memoryless Channel. 

Moreover, they also assume that the relay is full-duplex, i.e. it can transmit and receive at 

the same time on the same time-frequency resource. In Theorems 1 and 4 of [CEG79], a 

block-Markov coding strategy nowadays termed “Decode-and-Forward” (DF) is 

introduced and is shown to be capacity-achieving when the channel is physically 
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degraded, i.e. when the signal received at D is a degraded (e.g. noisy) version of the 

signal received at R. Another coding strategy is introduced in Theorem 6, and is called 

Compress-and-Forward (CF), Quantize and Forward or Estimate-and-Forward in the 

literature. For the general (non-degraded) relay channel, [CEG79] only provides an 

upper-bound on the capacity, which is often termed cut-set bound or max-flow min-cut 

bound. 

2.1.1 Preliminary note on capacity bounds 

Before providing expressions for capacity bounds, it is important to clarify the 

notations used in this document. Capacity bounds are in general established [CT91] by 

random coding techniques and the use of joint typicality and the Asymptotic 

Equipartition Property, or by strong typicality. Both require infinite length codewords 

because they rely on either the weak or the strong (for strong typicality) law of large 

numbers. For instance the codewords transmitted on a Discrete Memoryless Relay 

Channel by a source S and a relay R can be denoted as length-n sequences of random 

variables { }
1

nS
iX  and { }

1

nR
iX  drawn i.i.d. from the set n n

S Rχ χ×  where Sχ  and Rχ  are 

discrete sets of symbols, and the capacity theorems are obtained by growing n  to infinity. 

At least on DMC and Gaussian channels, the capacity bounds are ultimately expressed as 

a function of the probability density function (in the Gaussian channel case) or probability 

mass function (in the DMC case) of the source and relay symbols. In this thesis, we 

mainly focus on the optimization of the signal distributions and we rely on information-

theoretic results derived elsewhere for the proof of convergence to the capacity bound. 

Therefore, unless explicitly stated, we denote the source and relay codewords by Sx  and 

Rx . Furthermore, we write the joint distribution ( ),S Rp x x  in which we do not 

distinguish the random variable and its realization. In the multi-antenna case we write 

( ),S Rp x x  where 
S

x  and 
R

x  are two random vectors of length 
S

N  and 
R

N , the 

number of antennas at S and R. 

 

2.1.2 The cut-set bound on the relay channel capacity 

The cut-set upper-bound on the full-duplex three-node relay channel capacity is 

derived in [CT91] and [CEG79]. With the notations of §2.1.1, the CSB reads: 
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( )

( ) ( )( ),
,

max min ; , , , ;
S R

FD CSB FD S D R R S R D
p x x

C C I x y y x I x x y≤ =  (2.1) 

where ,D Ry y  are the symbols received at D and ( ); ,S D R RI x y y x  denotes the 

conditional mutual information between Sx  and ( ),R Dy y  given Rx . It can be noticed 

that (2.1) can be obtained by a straightforward application of the max-flow min-cut upper 

bound on the capacity of any m-node network given in Theorem 14.10.1 of [CT91] and 

which states that the rates ijR  are achievable if there exists a joint p.d.f. ( )1 2, ,..., mp x x x  

such that  

 
( ) ( ) ( )( )

,

;
C C

C

ij S S S

i j

R I x y x
∈ ∈

≤∑
S S

 (2.2) 

where the sum is performed over all the possible partitions of the nodes into 

complementary sets S  and CS  such that the sources are in S  and the destinations are in 

CS . The equation (2.2) states that the sum-rate between all the sources and the 

destinations is upper-bounded by the minimum mutual information between the signals 

transmitted by the nodes in S  and the signals received by the nodes in CS  given the 

knowledge of the signals transmitted by the nodes in CS . As illustrated on Figure 1, there 

are two cuts that separate S from D in the 3-node relay channel, which leads to equation 

(2.1). The cut that separates S on one side and (R,D) on the other side is called the 

broadcast cut and the cut that separates (S,R) from D is called the MAC cut. However, 

one should pay attention that the capacity of the relay channel is not equal to the 

minimum between the capacity of the S-(R,D) broadcast channel and the (S,R)-D MAC 

channel, which are both computable. 

 

 

 

 

Figure 1: The max-flow min-cut upper-bound for the 3-node relay channel 

In [CEG79], it is shown that the cut-set bound is tight on the physically degraded 

relay channel and on the general relay channel with feedback. We do not consider these 

two cases because the physically degraded relay channel cannot model a real 3-node 

D

R

S D

R
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wireless relay channel
1
, and because feedback in [CEG79] means that S and R must know 

perfectly the observations at R and D, which is again unrealistic. 

Also note that the cut-set bound (2.2) is also valid for continuous sources, as 

highlighted in remark 28 of [KGG05]. In [HZ05] the cut-set bound on the general full-

duplex Gaussian relay channel is given, but to our knowledge the details of the associated 

computation are published for the first time by El Gamal in Appendix A of [GMZ06], i.e. 

more than 25 years after [CEG79]! Let assume circularly symmetric white Gaussian noise 

of unit variance at R and D, and denote by 0H , 1H  and 2H  the complex channel gains 

on the S-D, S-R and R-D links. In the Gaussian relay channel these gains are assumed 

fixed, and Gaussian codebooks are always assumed [CEG79][CT91][HZ05] because it 

can be proven that they maximize at least the DF achievable rates and the CSB [CEG79]. 

The links can therefore be characterized by their signal to noise ratios 
2

0 0 SH Pγ = , 

2

1 1 SH Pγ =  and 
2

2 2 RH Pγ = , where [ ]2

S SP E x�  and [ ]2

R RP E x�  The cut-set 

bound can be computed as: 

 
( )( )( )

( )
0 1

0 1
0 2 0 2

log 1 1 ,
max min

log 1 2
FDC

ρ

ρ γ γ

γ γ ργ γ≤ ≤

 + − + 
≤  

+ + +  

 (2.3) 

where [ ] ( )2
* /S R S RE x x P Pρ �  is the correlation between the source and relay 

codewords.  In [HZ05], the authors distinguish the synchronous and asynchronous relay 

cases. In the synchronous case, the complex channel is known at each node and the 

source and relay can transmit coherently to the receiver. In the asynchronous case, the 

author introduces on 2H  an unknown random phase uniformly distributed on [ [0;2π  

and proves that in this case, the maximum in (2.3) is achieved when 0ρ = , i.e. the 

source and relay transmit uncorrelated codewords. In this report we prefer to distinguish 

the case where channel knowledge is available at each node from the case where channel 

is only available at the receiver side. Indeed, in OFDM systems it is relatively easy to 

achieve accurate frequency synchronization between S and R to within a small fraction of 

the subcarrier spacing and time synchronization to within a small fraction of the cyclic 

prefix. However, it is very challenging to achieve full channel knowledge at each node 

when one of the nodes is mobile. Therefore, although S and R may be synchronized, they 

                                                      

1
 In a physically degraded relay channel, the signal received at the destination is a random 

degradation of the signal received at the relay. This means that all the information is contained in 

the signal transmitted by the relay. 
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may not be able to transmit coherently unless full channel knowledge is available at each 

node. Also notice that 1ρ =  is optimum when 1γ → +∞ and 0ρ =  is optimum when 

2γ → +∞  when other SNRs are fixed. This limit behaviour can be easily explained once 

the Decode-and-Forward and Compress-and-Forward strategies are introduced, which is 

the topic of the next sections. 

 

2.1.3 Relay Duplexing considerations 

The practical realization of a full-duplex relay seems challenging. Indeed, a large 

isolation of the transmit and receive chains needs to be achieved. Otherwise, a strong 

signal may loop back from the transmitter into the receiver. If the RF front-end does not 

have enough dynamic range, saturation may occur. But even if it does have enough 

dynamic range, this interfering component has to be removed by e.g. echo-cancellation 

techniques. Achieving a large isolation is feasible by separating the transmit and receive 

antennas by several meters, provided there is enough space on the relay site. If the 

transmit and receive antennas are close, then directional antennas can be used and the 

front-to-back ratio shall be large-enough to avoid the saturation problems mentioned 

before.  

2.1.3.1 Half-duplex relaying protocols 

For the reasons mentioned above, half-duplex relays are therefore very frequently 

considered when it comes to practical implementation (e.g.[16j07]). In half-duplex 

relaying the relay tansmission and reception are scheduled on separate time-frequency 

resource. Both TDD and FDD relaying are technically feasible, although TDD relay 

implementation seems more straightforward [T05]. For instance in the IEEE802.16j Task 

Group, a frame structure allowing TDD relaying is considered, as illustrated on Figure 2. 

 

Figure 2: The IEEE802.16j TDD relaying frame structure 
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In this thesis we consider three TDD relaying protocols as in [NBK04], and define 

them as illustrated on Figure 3: 

• Protocol I (P1): the source is not allowed to transmit in the relay-transmit slot. The 

destination receiver is active during the two slots and can therefore combine the 

signals received from the source and relay. 

• Protocol II (P2) assumes that the Source and Relay transmit simultaneously during 

the second slot, but the destination receiver is switched off during the relay-receive 

slot. This protocol is typically useful if cooperative relaying is introduced in existing 

standards with backward compatibility requirements (e.g. IEEE802.16j): in this case, 

existing space-time coding schemes (e.g. Alamouti STBC) can be distributed on the 

antennas of the Base Station and Relay Station to realize downlink cooperation 

without having to modify standard-compliant Mobile Stations. 

• Protocol III (P3) assumes that the Source and Relay are allowed to transmit 

simultaneously during the second slot, and that the Destination is allowed to listen to 

the first slot and combine the signals from both slots. 

 

  

Figure 3: A possible sub-categorization of TDD relaying protocols 

Note also that another categorization of TDD protocols is introduced in [YE07] and 

[K04], in which static vs. random and fixed vs. dynamic TDD protocols are considered. 

In random protocols, the time-sharing between the relay-transmit and receive phase is a 

random variable that is used to convey some information, whereas it is deterministic for a 

given channel realization in static protocols. Moreover, a static protocol can be dynamic 

if the value of the time-sharing variable depends on the channel realization. In this report 

we consider only static protocols, which may be dynamic when the time-sharing 

parameter can be optimized as a function of the Channel State Information. We therefore 

define a variable [ ]0;1t ∈  and consider a two-slot TDD
2
 protocol where the relay 

                                                      

2
 Note that in FDD a separation of the time into two time slots is also performed. For instance in 

the FDD-DL the relay receives from the BS at the higher frequency during a first slot and 

transmits to the MS at the higher frequency during a second slot. 
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receives during the first slot of duration t  and transmits during the second slot of duration 

1 t− . We consider three random variables 
(1)
Sx , 

(2)
Sx  and 

(2)
Rx  where the superscript ( )i  

with { }i 1,2∈  denotes the slot in which the signal was transmitted. 

In [HZ05], the cut-set bound on the static TDD relay channel capacity is expressed 

as: 

 

( )

( ) ( ) ( )
( ) ( ) ( )(1) (2 ) ( 2)

(1) (1) (1) (1) (2) (2) (2)

0 1 (1) (1) (1) (2) (2) (2)

, ,

; , 0 1 ; ,
max min

; 0 1 , ;
RS S

S R D R S D R

TDD
t

S D R S R Dp x x x

tI x y y x t I x y x
C

tI x y x t I x x y
≤ ≤

 = + − 
≤  

= + −  

 (2.4) 

In the Gaussian case, (2.4) becomes: 

 
( )( ) ( ) ( )( )

( ) ( ) ( )
0 1 0

0 1
0 1 0 0 2 0 2

log 1 1 log 1 1 ,
max min

log 1 1 log 1 2
TDD

t

t t
C

t tρ

γ γ ρ γ

γ γ γ ργ γ≤ ≤
≤ ≤

 + + + − + − 
≤  

+ + − + + +  

 (2.5) 

 

Note that in (2.5) it is assumed that the transmit power at a given device remains fixed, 

whereas in [HZ05] it can be subject to a further optimization under an average power 

over the two slots. In this report, unless specified, we will assume that devices operate 

under a maximum transmit power constraint, and in this case transmitting at full power 

during the two slots maximizes the CSB. This means that in Protocol 3 a larger total 

power is transmitted during the second slot, compared to Protocol 1. Sometimes in the 

document we will investigate the effect of constraining the total source plus relay transmit 

power during the second slot not to exceed the maximum source transmit power. 

 

2.1.4 Coding Strategies for the relay channel 

In order to introduce cooperative relaying strategies, it is interesting to study the 

behaviour of the cut-set bounds (2.3) and (2.5) in the two limit cases when 1γ → +∞  and 

when 2γ → +∞ .  

 
( )

( )
1 1

0 2 0 2
0 1

0 2 0 2

lim lim max log 1 2

log 1 2

FD TDD
C C

γ γ ρ
γ γ ργ γ

γ γ γ γ

→+∞ →+∞ ≤ ≤
= = + + +

= + + +
 (2.6) 

 
( )( )( )

( )( )
2 2

0 1
0 1

0 1

lim lim max log 1 1

log 1

FD TDD

SIMO

C C

C

γ γ ρ
ρ γ γ

γ γ

→+∞ →+∞ ≤ ≤
= = + − +

= + + =
 (2.7) 
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The physical interpretation of (2.6) is the following: when the Source to Relay link has 

infinite capacity, then both the TDD and FD cut-set bound converge to the 2 1× MISO 

capacity with per-antenna power constraint. In this case, the relay can successfully 

decode any message transmitted by the source in an infinitely short fraction t  of the total 

time as long as it contains a finite number of information bits per symbol. In the second 

time slot of duration 1 1t− → , S and R can then transmit this message coherently to the 

destination using Maximum Ratio Transmission (MRT), which is well known to achieve 

the capacity of the MISO channel and in this case the correlation ρ  of the two 

codewords tends to 1. Such a strategy is called Decode-and-Forward and is therefore 

capacity achieving in the limit case when 1γ → +∞ . Likewise when 2γ → +∞  (2.7) the 

cut-set bound converges to 1 2×  SIMO channel capacity. In this case, a capacity-

achieving strategy consists in performing rate-distortion source encoding of the signal 

observed at the Relay. This encoding can be modeled by the addition of an uncorrelated 

white Gaussian noise of variance equal to the quadratic distortion and the latter can be 

made arbitrarily small even if the duration 1 t−  of the second slot becomes infinitely 

small. Thus, the source message can be decoded from the Source and Relay observations, 

the latter being reconstructed with negligible distortion at the Destination. In the 

literature, this strategy is called Quantize-and-Forward (QF), Estimate-and-Forward (EF) 

or Compress-and-Forward (CF). In this report, we will use the CF acronym, and we may 

further categorize CF strategies according to the type of source coding that is used. 

Finally, note that hybrid strategies have been proposed (see e.g. Theorem 7 in [CEG79] 

and [SSS08]) which combine the DF and CF strategies, but we will not focus on them in 

this thesis. 

 

2.1.4.1 DF strategies 

 A DF strategy for the full-duplex relay channel is considered in [CEG79] and 

shown to achieve the following rate: 

 
( )

( ) ( )( ),
,

max min ; , , ;
S R

DF FD S R R S R D
p x x

R I x y x I x x y=  (2.8) 

As discussed in [KGG05], this rate is achieved by a Block-Markov superposition 

irregular encoding (i.e. codebooks of different size) strategy and successive decoding in 
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[CEG79], but an easier derivation employs Block-Markov superposition regular encoding 

and backward or sliding window decoding. On the Gaussian relay channel (2.8) becomes: 

 
( )( )

( )
1

,
0 1

0 2 0 2

log 1 1 ,
max min

log 1 2
DF FDR

ρ

ρ γ

γ γ ργ γ≤ ≤

 + − 
=  

+ + +  

 (2.9) 

In the following, we call Full DF (FDF) a strategy in which the relay has to decode all the 

message, and Partial DF (PDF) a strategy in which the relay only has to decode a part of 

the message. The achievable rate of PDF in the FD case is given in equation (13) of 

[KGG05]. The (regular) coding strategy that achieves this rate employs superposition 

coding at the source of two messages: one is decoded by the relay, and the other one is 

decoded only by the destination. The PDF strategy achieves the rate   

 
( )

( ) ( ) ( )( ),
, ,

max min ; ; , , , ;
S R

PDF FD R R S D R S R D
p x x u

R I u y x I x y u x I x x y= +  (2.10) 

The computation of the PDF achievable rate in the Gaussian case is performed in 

[GMZ06]:  

 
( ) ( )( )( )

( )
0 1

,
0 1

0 2 0 2

max log 1 ,  log 1 1 ,
max min

log 1 2
PDF FD

R
ρ

γ ρ γ

γ γ ργ γ≤ ≤

 + + − 
=  

+ + +  

 (2.11) 

Comparing (2.11) with (2.9), it can be observed that PDF and FDF achieve the same rate 

on the full-duplex Gaussian relay channel, except in the case when 0 1γ γ>  where PDF 

degenerates into direct transmission from S to D, skipping the relay, but such a case does 

not have a practical interest, because it can be addressed by an adaptive selection of the 

best transmission strategy as a function of the CSI on the three links. 

Contrary to the FD case, the achievable rate of the PDF and FDF strategies on the static 

TDD relay channel are different. Let first consider TDD Protocol 3 as defined in §2.1.3.1. 

A PDF strategy for the Gaussian TDD relay channel is proposed in [HZ05]: the Source 

transmits a first message 0ω  at a rate 0R  using a signal ( )(1)

0Sx ω  during the first slot. 

The relay decodes 0ω̂  and transmits ( )(2)

0
ˆ

Rx ω  during the second slot while S transmits a 

new message 1ω  be superposition coding: ( ) ( ) ( )(2) (2) (2)
, ,0 1 0 0 1 1,S S Sx x xω ω ω ω= + . Because 

we assume a synchronized scenario, the signals ( )(2)

0Rx ω and ( )(2)
,0 0Sx ω  are correlated in 

order to cooperate by performing a Maximum Ratio Transmission whereas 1ω  is mapped 

onto an independent signal ( )(2)
,1 1S ωx  transmitted at rate 1R  using superposition coding. 

The destination successively decodes 0ω̂  and 1ω̂ . The achievable rate of this strategy is 
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derived in [HZ05] and the derivation can also be found as a special case of the proof of 

Proposition 2.1 in Appendix C.1: 

 
( ) ( ) ( )( )

( ) ( ) ( )
1 0

, 3
0 1
0 1 0 0 2 0 2

log 1 1 log 1 1 ,
max min

log 1 1 log 1 2
PDF P

t

t t
R

t tρ

γ ρ γ

γ γ γ ργ γ≤ ≤
≤ ≤

 + + − + − 
=  

+ + − + + +  

 (2.12) 

The FDF strategy achieves the following rate for Protocol 3:  

 
( )

( ) ( ) ( )
1

, 3
0 1

0 0 2 0 2

log 1 ,
max min

log 1 1 log 1 2
FDF P

t

t
R

t t

γ

γ γ γ γ γ≤ ≤

+  
=  

+ + − + + +  

 (2.13) 

It is important to introduce some notations for some simple strategies which will serve as 

references in all the report. First, the capacity of the S-D, S-R and R-D links: 

 ( ) ( ) ( )0 1 2
log 1     log 1     log 1

SD SR RD
C C Cγ γ γ= + = + = +  (2.14) 

The achievable rate of the FDF strategy for Protocol 1 is: 

 ( ){ }, 1
0 1
max min , 1FDF P SR SD RD

t
R tC tC t C

≤ ≤
= + −  (2.15) 

It can be easily checked that if 
SD RD

C C<  and 
SD SR

C C<  then the optimum rate is:  

 ,
SR RD

FDF I

SR RD SD

C C
R

C C C
=

+ −
 (2.16) 

Otherwise , 1FDF P
R  cannot exceed 

SD
C  which means that it is better not to relay. Finally, 

we will also consider in this report the Non-Cooperative DF relaying (NCDF) strategy, 

due to its practical importance. It can be defined as a variant of Protocol I in which the 

destination only receives during the second slot. In this case the achievable rate is: 

 
[ ]

( ){ },
0;1

max min , 1
NC DF SR RD

t
R tC t C

∈
= −  (2.17) 

The optimum time sharing is: 

 ˆ RD

SR RD

C
t

C C
=

+
 (2.18) 

And the achievable rate is: 

 ,
SR RD

NC DF

SR RD

C C
R

C C
=

+
 (2.19) 

Note that from (2.19) it is clear that the achievable rate of NCDF is upper-bounded by the 

minimum between the capacity of the first hop link and that of the second hop link: 

 ( ), min ,NC DF SR RDR C C≤  (2.20) 
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As suggested in the introduction of this section, all cooperative DF strategies 

become capacity achieving for 1γ → +∞ . However, when 0 1γ γ=  even PDF cannot 

outperform direct source to destination transmission, therefore other strategies have to be 

considered in order to benefit from relaying in such situations, and this is the purpose of 

the CF strategy presented in the next section. 

 

2.1.4.1.1 Can superposition coding further increase the rate? 

We consider an extension of the partial DF strategy in which superposition coding is 

performed in both slots. Three messages ,1dω , ,2dω  and rω  are sent to the destination at 

respective rates ,1dR , ,2dR  and rR . The message rω  is called the relayed message, while 

the other two are called direct messages because they are not forwarded by the relay. 

During the first slot, S transmits ,1dω  and rω  via superposition coding. The relay first 

decodes ,1dω  from 
(1)

R
y  and removes the contribution of this message from its 

observation before decoding rω . During the second slot, the relayed message rω  is used 

by S and R to cooperate while S sends the second direct message ,2dω  via superposition 

coding. The destination starts by decoding rω  from 
(1)
Dy  and 

(2)
Dy , and removes its 

contribution from the observation before decoding ,2dω . 

 

Proposition 2.1: Superposition coding during the first slot cannot increase the achievable 

rate of the partial DF strategy on the single-antenna Gaussian TDD relay channel. 

 

Proof: See Appendix C.1. 

 

This result is not straightforward, and it illustrates well the fact that the relay channel 

shall not be treated as a BC followed by a MAC. Indeed, SC  is the optimum coding 

strategy for the scalar Gaussian broadcast channel [CT91], therefore it could have been 

expected to increase the rate when applied to the first hop of the relay channel. 
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2.1.4.2 CF strategies 

The CF strategy discussed in the introduction of §2.1.4 when 
2

γ → +∞  can actually 

be improved. Indeed, a CF strategy with a larger achievable rate is introduced in Theorem 

6 of [CEG79]. It relies on Wyner-Ziv coding of the relay observation. In [WZ76], Wyner 

and Ziv compute the rate-distortion function for source coding of discrete sources with 

side information at the decoder. When the decoder has the knowledge of a signal 

correlated with the source, the latter can be encoded at a lower rate for a given distortion. 

In [W78], Wyner generalizes this work to continuous sources, and in particular to 

Gaussian sources with quadratic distortion. In [CEG79], the authors exploit the fact that 

the observations at R and D are correlated, since they are both noisy versions of the same 

signal transmitted by S. Therefore, Wyner-Ziv coding can be applied to perform rate-

distortion coding of the relay observation. We will discuss this source coding strategy in 

more details in Chapter 4, but for the moment we will assume that the relay observation 

Ry  can be compressed to a certain message Rω  and the destination has a reconstruction 

function ( )ˆ ,R R Dy f yω= . The general expression for the CF achievable rate in the FD 

case is: 

 

( )
( )

( ) ( )

( ) ( ) ( ) ( )

,
ˆ, , , ,

, , , , ˆ

ˆmax ; ,

ˆs.t. ; , ;

ˆand , , ,

S R R D R

CF FD S R D R
p x x y y y

R R D R R D

S R R R R R D S RR R D RS
p x x y y y

R I x y y x

I y y y x I x y

p x p x p y x y p y y x x 
= 

 

=

≤  (2.21) 

The proof of (2.21) is quite involved technically, but the outcome lends itself to 

interpretation. The term in (2.21) that shall be maximized corresponds to the left hand 

side of the CSB in equation (2.1), i.e. the broadcast cut, except that the relay observation 

is replaced by the reconstructed relay observation. The optimization over the joint 

probability distribution is constrained by the fact that the rate at which the relay 

observation can be encoded cannot exceed the rate at which the relay can reliably send 

the message Rω  to the destination. 

In [KGG05] and [HZ05], the achievable rates of the CF strategy on the FD and TDD 

Gaussian relay channels are derived: 

 1
, 0log 1

1
CF FD

FD

R
γ

γ
η

 
= + + + 

 (2.22) 

where 
FD

η  is called the compression noise variance and is equal to: 
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 0 1

2

1
FD

γ γ
η

γ

+ +
=  (2.23) 

In TDD, the achievable rate is: 

 ( ) ( )1
, 0 0log 1 1 log 1

1
CF TDD

TDD

R t t
γ

γ γ
η

 
= + + + − + + 

 (2.24) 

with 
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0 1

1
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0

1

1 1 1
1

TDD t

t

γ γ
η

γ
γ

γ

−

+ +
=

 
  + + −  +  

 (2.25) 

The rate (2.24) is achieved in [HZ05] using a Partial CF strategy (PCF): during the first 

slot, S transmits a message 0ω  at rate 0R  by means of the codeword ( )0Sx ω , the relay 

compresses its observation 
(1)
Ry  to the index 1ω , and transmits ( )(2)

1Rx ω to D during the 

second slot, while S transmits a new message 2ω  at rate 2R  via a new codeword 

( )(2)
2Sx ω . The achievable rate (2.24) is computed as the sum 0 2R R+ . More details on 

the source and channel decoding strategy will be provided in Chapter 4. 

 

2.1.4.3 LR strategies 

The Amplify-and-Forward (AF) strategy has been known and used for a long time, 

for instance by conventional non-regenerative satellite systems: the satellite receives the 

signal from an earth station, amplifies it and retransmits it towards the earth, without 

attempting to decode it. In [LW04], Laneman considers TDD protocols and a strategy that 

is called Orthogonal Amplify-and-Forward (OAF), which corresponds to Protocol 1 in 

§2.1.3.1. In this case, the relay quantizes its observation during the first slot with enough 

accuracy so that the distortion is negligible, the quantized samples are stored and 

retransmitted during the second slot. In this case, the achievable rate is: 

 1 2
, 0

1 2

1
log 1

2 1
OAF TDDR

γ γ
γ

γ γ

 
= + + + + 

 (2.26) 

Notice the presence of the 1/ 2  factor in (2.26) due to the time-sharing parameter that 

cannot be optimized in AF. When 1γ → +∞ , the achievable rate with OAF cannot 

exceed one-half of the MISO capacity, contrary to DF which is capacity achieving. 

Likewise, when 2γ → +∞ , OAFR  cannot exceed one-half of the SIMO channel capacity, 

and is therefore outperformed by CF which is capacity achieving. In[AV06], it is shown 
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that the negative effect of the constrained time-sharing parameter can be alleviated at the 

system level, when several AF relays transmitting to different destinations operate in 

parallel on the same time-frequency resource and the relay-destination pairs are 

sufficiently separated. Non-orthogonal AF (NAF) strategy, which corresponds to Protocol 

3 in §2.1.3.1 is addressed in [GMZ06] as a special case of Linear Relaying (LR). In LR, 

the relay retransmits a (causal) linear combination of previous observation blocks. Thus 

AF is a special case of LR in which only the previous block is retransmitted. In [GMZ06] 

the authors show that NAF, although not the best among all LR strategies, may 

outperform DF and CF at low SNR 1γ  on the Source-Relay link. Yet, in the 3-node TDD 

case, LR suffers from the same ½ penalty as AF which makes it achieve a rate 

significantly lower than both DF and CF and this is the reason why we do not consider it 

further in this thesis. 

 

2.1.4.4 A case study: the Gaussian 3-node relay channel 

In this section, we illustrate the various capacity bounds expressed so far in this 

report by considering a simple 3-node Gaussian relay channel, in which S, R and D are 

aligned, with 0 0dBγ = . The Source and Relay transmit powers are set to 20dBm and the 

noise power at D is set to -90dBm. We assume a log-distance path-loss model with 1 

meter breakpoint distance, and a path loss exponent of 2.6 beyond the breakpoint 

distance. On the plots, distances are normalized by the Source-Destination distance d(S-

D), which is equal to 490m. 

 

 

Figure 4: A three-node relay setting with S,R and D aligned 

In this case, the capacity of the Source-Destination channel, measured in bit per 

channel use, is ( )log 1 1 1SDC = + = . On Figure 5, the capacity bounds on the FD 

Gaussian relay channel are plotted. The following observations can be made: 

• The MISO and SIMO bounds are valid only when R is in the immediate 

neighborhood of S or D. The CSB is the only valid upper bound for all relay 

locations. 

• The DF is the best strategy when R is close to S and CF is the best strategy when R is 

close to D. Moreover, a mixed strategy which selects between DF and CF depending 

S R D

d(S-D)=1

S R D

d(S-D)=1
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on the relay location would operate in the worst case at less than 0.3 bit per channel 

use from the CSB, i.e. about 85% of the relay channel capacity can be achieved by 

this strategy.  

 

 

Figure 5: Capacity bounds on the full-duplex Gaussian relay channel 

On Figure 6, the achievable rates of the NCDF, FDF, PDF and PCF strategies are 

compared to the TDD and FD cut-set bound. The following observations can be made: 

• A large loss is incurred due to half-duplex relaying. This loss is the largest when R is 

half-way between S and D where it reaches almost 1 bit per channel use, which 

represents one-third of the full-duplex capacity. Moreover, even though the TDD 

achievable rates are theoretically equal to the FD achievable rates when R is infinitely 

close to either S or D, there is always a non-negligible gap of a few tenths of bit per 

channel use between full-duplex and TDD relaying when the distances are greater 

than 1m. This gap is due to the fact that the capacity of a point-to-point link grows 

logarithmically with the SNR, and even if at 1m distance the SNR is large the 

capacity of this link cannot be assumed infinite. 
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• The NCDF strategy brings an improvement over direct Source-Destination 

transmission but cannot outperform 
SD

C  when R is infinitely close to S. The optimum 

position of R for NCDF is half-way between S and D. This is a coincidence, as the 

optimum relay location is in general different for arbitrary Source and Relay transmit 

power. 

• The PDF and FDF are capacity achieving when R is infinitely close to S, whereas the 

NCDF strategy is not. 

• The PDF strategy is optimum when R is close to S, and the PCF is optimum when R 

is close to D. A mixed strategy which selects the best of PDF and PCF can thus 

operate at less than 0.3 bit per channel use from the TDD cut-set bound. 

 

 

Figure 6: Capacity Bounds on the Gaussian TDD relay channel 

 

2.1.5 Multi-relay, multi-user and multi-way extensions 

The 3-node relay channel described so far can be viewed as a building block for 

more complex deployment topologies. Let for instance consider the deployment on 

Figure 7: the devices can be grouped into two sets of 3 nodes: (BS, RS1, MS1) and (BS, 
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RS2, MS2). As long as transmissions of nodes belonging to these sets are scheduled on 

orthogonal time-frequency resource, the relays do not interfere (the dashed arrows 

represent potential interference) and the capacity bounds for the 3-node relay channel can 

be used as inputs to the resource allocation algorithm. Such a resource allocation strategy 

is explained in [AV07]. Likewise, considering the “diamond” [XS07] topology of Figure 

8, the study of cooperative beamforming performed in the context of 3-node relaying can 

be almost straightforwardly applied to model the cooperative beamforming of RS1 and 

RS2 towards the MS. 

However, larger rates can be achieved by considering coding strategies specifically 

designed for the network topology. Some example topologies which are addressed in the 

literature include the parallel relay channel, the relay channel with more than two hops, 

the Multiple Access Relay Channel and the Broadcast relay channel. A good survey of 

recent information-theoretic results for these topologies is given in [KGG05] and [C08], 

and we will not further discuss them for the sake of brevity because most of our results 

focus on the three node relay channel. However, in §4.3 we will consider topologies with 

more than 3-nodes in the special context of out-of-band relaying and BS cooperation 

which are the purpose of the next section. 

   

 

Figure 7: Cellular downlink relaying with 2 relays and 2 users 
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Figure 8: Diamond relay topology in downlink 

In addition to relay topologies involving multiple Sources (MARC), multiple destinations 

(BRC) or multiple relays (e.g. parallel relay channel), an active research topic considers 

multiple Source-Destination pairs. A simple example is the 3-node two-way relay channel 

[RW07], which aims at increasing the system spectral efficiency when downlink and 

uplink traffic are not too asymmetric. Again, this scenario and associated coding 

strategies are beyond the scope of this thesis and we will not discuss them further. 

 

2.1.6 From out-of-band relaying to base stations cooperation 

Most of the literature considers so-called “in-band” relaying, in which the source 

and relay transmit at the same carrier frequency. Their transmissions can then either be 

separated in time and frequency via orthogonal scheduling, or on the contrary S and R 

may be scheduled on the same time-frequency resource, and cooperatively beamform to 

the destination. However, in a cellular deployment a fixed RS can be shared by a large 

number of MS, and in this case the link between the BS and the RS may well become the 

bottleneck of the MARC (in uplink) or the BRC (in downlink). Out-of-band relaying is a 

potential solution for this problem. It consists in assigning distinct carrier frequencies to 

the communications involving the MS and to those involving only infrastructure 

equipment. The carrier frequency assigned to the communications involving the MS can 

be termed “access carrier frequency” and the other one can be termed “backhaul carrier 

frequency”. The MS will be designed to transmit and receive only on the access 
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frequency, whereas the BS and RS shall be able to transmit and receive on both 

frequencies, and two transceivers are thus needed. This makes out-of-band relaying a 

more expensive solution at first glance. 

Under the assumptions explained above, the specific features of cooperative out-of-

band relaying vs. cooperative in-band relaying are the following: 

• TDD Protocols 1 and 3 are not feasible in downlink and Protocols 2 and 3 are not 

feasible in uplink, because the MS cannot operate on the backhaul frequency. 

Moreover, in many cases it makes sense to assume that the BS and RS are able to 

transmit and receive on the backhaul and access frequencies simultaneously. If so, 

there is no need for a time-slotted cooperation protocol. 

• Since a cellular BS and RS are infrastructure equipment, they can be designed to 

transmit and receive on a large bandwidth. Moreover, if the RS is mounted on a lamp 

post or rooftop, it is likely (but not always) in LOS with the BS. Hence, the capacity 

of the backhaul (BS-RS) link can be much larger than that of the access links (BS-MS 

and RS-MS) in out-of-band relaying. This has an impact on the relative performance 

of cooperative coding strategies. 

 

Achievable rate calculations for out-of-band relaying will be the same whether the 

backhaul is wireless or wired. If we extend out-of-band relaying to multiple parallel 

relays, this naturally leads us to the topic of BS cooperation, which is addressed in §4.3 of 

this thesis. As pointed out in [ACH07], a key challenge for future BWA systems will be 

to overcome inter-cell interference. Indeed, state-of-the-art cellular deployments are 

typically based on frequency reuse factors between 2 or 3, and the target for future 

networks is reuse-1 in order to maximize the spectral efficiency. Cooperative BS 

transmission and reception, also called cellular network coordination, is viewed as the 

ultimate (but also the highest complexity) solution to maximize the system spectral 

efficiency. A reuse-1 coordinated cellular network is essentially the same as a set of 

multiple parallel out-of-band relays linked to a BS. In the literature on coordinated 

cellular network, the BS is often called a “Central Processing Unit” (CPU) or “main BS” 

and the RS is either termed BS or “receiving agent” as in [SSS08]. In the uplink, the 

signal transmitted from a set of MSs is received by a set of cooperative BSs 

interconnected by a fixed rate backhaul. The decoding is performed by the CPU which 

can be located at one of the BS sites. In the downlink, the cooperative BSs transmit 
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synchnonously to a set of receiveing MSs. If the backhaul capacity is large, then the set of 

cooperating BSs can be viewed as one Virtual Antenna Array and if the cardinality of this 

set is large, then all inter-cell interference can virtually be removed. In reality, backhaul 

rate and latency limitations and MIMO processing complexity have to be taken into 

account, and this is the purpose of §4.3 of this thesis. 

 

2.2 Modeling state-of-the-art broadband wireless systems 

In our work we try to have as much realistic assumptions as possible corresponding 

to a state-of-the-art broadband wireless system. In this section we discuss some key 

assumptions related to this choice, and highlight the differences with the literature.  

 

2.2.1 The fading MIMO relay channel 

In §2.1.2 and §2.1.4, the capacity bounds are computed assuming a constant flat-

fading channel. Of course, because each wireless link is subject to fading, the relay 

channel can also be studied in terms of ergodic and outage capacity. In [SEA03] the 

concept of cooperative diversity is introduced. In [LW04] quasi-static flat fading is 

assumed and analytical expressions for the outage probability of various half-duplex 

cooperation protocols are provided. It is shown that most cooperation protocols for the 3-

node relay channel provide a diversity order of 2. Papers typically analyze the ergodic 

capacity ([HZ05][WZ05][YE07]) or the outage capacity ([LW04]), and more recently the 

Diversity Multiplexing Trade-off (DMT) [YE07].  

 

2.2.1.1 Time variations and tracking of the channel 

In our thesis work, we focus mainly on the quasi-static fading channel, i.e. the 

channel remains constant over a frame, which we define in TDD as two successive slots. 

However, the channel may change from one frame to the next. Such a model is well 

suited to low-mobility (e.g. pedestrian) users. For instance, let consider the IEEE802.16e 

system. Assuming a carrier frequency Cf  equal to 3GHz, and denoting by v  the 

maximum relative velocity (expressed in m/s), the maximum Doppler frequency (in Hz) 

equals 10Df v=  and the channel coherence time ( )1/ 2C DT f≈  is frequently assumed. 
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At pedestrian velocities of 1m/s to 5 m/s, the channel coherence time thus ranges from 10 

ms to 50 ms. The typical frame duration in a TDD system such as IEEE802.16e is 5 ms. 

Therefore, it is reasonable at these speeds to assume a quasi-static channel. Moreover, at 

such velocities the channel can be tracked and CSIT can be exploited. In Chapter 3 and 

Chapter 4 of this thesis, capacity bounds are derived assuming full CSI. In the context of 

relaying, full CSI means that every node has perfect knowledge of the channel on all 

links. However, one must pay attention to the delay between the estimation of the channel 

and the application of the corresponding precoding. Therefore, different degrees of 

channel knowledge will have to be considered at the transmitter, from full CSI to partial 

and statistical CSI (see §5.2.1.4). If we now consider an FDD system such as 3GPP LTE, 

the frame duration is 500 µs, therefore such system shall be able to track the channel at 

approximately 10 times higher velocities. When perfect CSIT is assumed, it does not 

make sense to study the outage performance, because the capacity (or the achievable 

rates) is known at each frame and the system can adapt the spectral efficiency on a frame-

by-frame basis in order to avoid an outage situation. In this case, it makes more sense to 

compute the average rate over a large number of independent channel realizations. 

2.2.1.2 Variations in frequency and space 

Very few papers in the literature on the fading relay channel consider a realistic 

frequency-selective fading channel model. This is probably justified by the difficulty to 

obtain analytical results with such channel models. In this thesis, because we are 

interested in broadband wireless systems we have to adopt a channel model with time, 

frequency and space variations. For homogeneity and ease of comparison between our 

simulations results, we restrict to a single broadband channel model which is the typical 

urban model of [B05]. Fortunately, OFDM systems can be modeled as a set of parallel 

Gaussian channels [RC98][BGP02] and the capacity of a MIMO-OFDM link is the sum 

over all the subcarriers of the individual MIMO flat-fading channel capacities. Therefore 

we will not need to asume a broadband signal model in our achievable rate derivations. 

In state-of-the-art broadband wireless systems, a transmitter which does not have 

CSIT will use a set of subcarriers spread over the whole channel bandwidth, in order to 

benefit from frequency diversity. Therefore, the additional space diversity provided by 

cooperation protocols typically has a much lower impact than what is often claimed in the 

literature based on flat fading simulations. Therefore simulations in §5.2.1.1 will show 
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that the outage performance of a cooperative strategy may be significantly different on a 

broadband channel (OFDM) compared to a narrowband channel (single-carrier) for a 

given average SNR, whereas the average achievable rate performance is not much 

different. 

 

2.2.2 Modeling radio device constraints 

2.2.2.1 Transmit power constraints 

How to realistically model transmit power constraints is definitely a controversial 

topic. The most common assumption in the MIMO literature is a sum-power constraint 

over all the transmit antennas, as opposed to a per-antenna power constraint. The reason 

for assuming a total transmit power constraint is probably threefold: 

• It allows a “fair” comparison between MIMO and SISO systems. 

• It simplifies the computation of the MIMO capacity: under perfect CSIT, waterfilling 

on the MIMO channel eigenmodes is optimum only under total power constraint. 

Otherwise, it is not possible (to my knowledge) to obtain an analytical expression of 

the optimum precoder. 

• It simplifies benchmarking of coding and signal processing strategies among authors.  

The same kind or arguments can be used to justify the adoption of a sum-power constraint 

on the relay channel: assuming a total source plus relay transmit power allows a “fair” 

comparison between cooperative relaying strategies, whether a single or multiple devices 

are allowed to transmit. Another “system-level” argument for adopting a total power 

constraint is the fact that the same interference will be radiated if a sum-power constraint 

is assumed. In [HZ05], the authors even assume an average transmit power constraint in 

time domain (equivalent to an energy constraint) when computing capacity bounds on the 

TDD relay channel, allowing the source to transmit at different power levels during the 

first and second slot, as long as its average power is below a certain threshold. 

 

Though we acknowledge the advantages of sum power constraints, we will most often 

assume (unless explicitly stated) individual transmit power constraint at the source and 

relay. The motivation for this is that at least in cellular systems, different devices have 

independent power supply. The argument that a total power constraint allows a “fair 

comparison” in terms of interference generated is also questionable: at a given transmit 
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power, a relay located on a lamp pole will generate less interference on remote cells than 

a Base Station located on a tower. Moreover, in order to be even more realistic the 

following constraints shall be taken into account: 

• Per-antenna power constraints are more realistic than sum-power when devices are 

allowed to operate at full power, since a typical MIMO transmitter embeds one power 

amplifier per transmit chain. 

• Spectrum Mask constraints. Standards for wideband systems (e.g. [16e05]) typically 

impose a spectral mask that is almost flat in order to make the interference generated 

by the system as white as possible. This mask can be modeled by a per sub-carrier 

transmit power constraint in a MIMO-OFDM system. 

• In urban deployments the most stringent constraint can be on the maximum radiated 

power over all directions. Such a constraint is especially complex because it involves 

the antenna pattern and the transmit weights. 

The impact of the the first two implementation constraints listed above on capacity 

bounds is addressed in Chapter 5. From this short discussion we can conclude that there is 

not one but several valid assumptions on power constraints, depending on the goal of the 

study (e.g. benchmarking coding schemes, predicting performance at system-level, …). It 

is therefore of interest to be able to compute capacity bounds under various transmit 

power constraints. 

 

2.2.2.2 RF impairments 

Achieving an accurate modeling of the effect of PA non-linearities, phase noise and other 

RF impairments in capacity bounds is out-of-scope of this thesis. We account for their 

existence in our simulations by preventing the average SNR at the input of the A/D 

converters from exceeding a threshold which we fix at 30dB. This means that even if an 

MS is very close to the BS or RS and receives an input power which is 60dB above the 

thermal noise threshold, the achievable rate will be computed assuming only 30dB SNR. 

2.2.2.3 Achievable rates and link-to-system interface 

As mentioned before, there are several approaches to the study of the MIMO relay 

channel capacity: a first approach consists in computing expressions for achievable rates, 

outage or ergodic rates. The problem with this approach is that obtaining such 

expressions becomes highly involved, especially when the number of nodes increases. 
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Even in the simple 3-node relay channel, the expression of the relay channel capacity is 

still unknown after 30 years of investigation. Another approach aims at deriving simple 

expressions that provide trends under simplifying (e.g. high SNR) assumptions: the DMT 

analysis belongs to this category. Though DMT is both a powerful and beautiful tool, 

which facilitates the design of space-time codes, it remains limited in the kind of 

conclusions it can provide: the fact that a strategy achieves a better DMT trade-off than 

another strategy does not mean that it provides the best achievable rate under the same 

conditions. As explained below, achievable rates offer the advantage of allowing 

throughput prediction, which is a convenient interface towards system-level simulations 

or resource allocation optimization.  

 

2.2.2.3.1 Degraded capacity 

The degraded capacity model is introduced in [CCB95] to predict the spectral 

efficiency of an OFDM system under a given target error rate with per-subcarrier bit 

loading, though it was probably used in previous works. Provided that the set of MCS in 

the system offers a small-enough granularity in terms of spectral efficiency, the 

throughput can be approximated as: 

 2 max

1

min log 1 ,
CN

i

i

R
γ

ρ
=

  
≈ +  

Γ  
∑  (2.27) 

where CN  denotes the number of subcarriers, iγ  denotes the SNR on the i th subcarrier, 

maxR  denotes the maximum spectral efficiency over all the Modulation and Coding 

Schemes (MCS) of the system, and 1Γ >  is a factor that captures the degradation w.r.t. 

the capacity that is due to non-ideal modulation and coding, i.e. finite source alphabet, 

finite-length coding, ….etc. The degradation factor Γ  is a function of the target error 

rate, and can be graphically interpreted as the distance (measure in dB of SNR) between 

the Shannon capacity vs SNR curve and the actual spectral efficiency vs SNR point of 

operation. Typical values observed for state-of-the-art systems range between 7dB to 

3dB, and naturally tend to be in the lower when the coding scheme is powerful (e.g. 

turbo-code, LDPC) and the decoding is close to ML. Note that in the following we 

assume for simplification that Γ  does not depend on the selected MCS A typical value 

for maxR  is 5 bits per QAM symbol, which corresponds to 64QAM with code rate 5/6. 
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The formula (2.27) can be extended to MIMO-OFDM systems. For instance, if 
SS

N  

spatial streams are multiplexed on each subcarrier, we can write:  

 
,

2 max

1 1

min log 1 ,
C SSN N

i j

i j

R
γ

ρ
= =

  
≈ +  

Γ  
∑∑  (2.28) 

where ,i j
γ  is the SNR on the jth spatial stream of the ith at the output of the receiver 

spatial processing. The degraded capacity model will be applied to cooperative links in 

§5.2.1.3, §5.2.2 and §5.2.3. 

 

2.2.2.3.2 Effective SNR mapping 

In [NR98], the notion of effective SNR is introduced to perform error prediction of 

convolutionally coded systems over frequency-selective channels. The effective SNR 
eff

γ  

is a function of the MCS, the codeword length, the channel realization and the noise 

variance. It is defined by: 

 ( ) ( ), , , ,
AWGN eff MCS MCS

PER i L PER i Lγ ≈ γ  (2.29) 

where 
AWGN

PER  is the PER vs SNR function on the AWGN channel, which depends on 

the index of the MCS and on the length L  of the packet, and γ  is a vector of SNRs on 

each state of the fading channel. In [E03], the Exponential Effective SNR Mapping 

(EESM) is proposed to predict the error rate in OFDM systems with Bit-Interleaved 

Coded Modulation (BICM). In EESM, the following formula is used: 

 
1

1
log exp

CN

i
eff

iC
N

γ
γ β

β=

  
= − −  

  
∑  (2.30) 

where β  is a parameter that equals 1 for BPSK, 2 for QPSK and shall be optimized for 

other constellations. A possible criterion to optimize β  is the variance of the target SNRs 

for given target error rate argt et
PER  over a large-enough set of 

trial
N  independent channel 

trials: 

 ( ) ( ) ( )
2

arg arg arg

1 1

1
arg min , , , ,

trial trialN N

t et eff t et eff t et

i itrial

PER i PER i PER
Nβ

β γ β γ β
= =

 
= − 

 
∑ ∑

 (2.31) 

For details on EESM, we refer the reader to [BSC04][CSL06][SRS05]. In [BSC04], it is 

shown that EESM allows an accurate error prediction for turbo-coded systems, up to a 

few tenths of dBs. In [CSL06], it is shown that EESM can also accurately predict errors 
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in systems employing HARQ (Chase Combining and/or IR). In [SRS05], the application 

of EESM to space-time coded systems is discussed. Error prediction is the key link-to-

system interface feature, as it allows to predict the throughput and the delay. For instance, 

under unlimited packet retransmissions, the throughput of a system for a given MCS and 

channel realization (normalized to have unit variance noise) equals: 

 ( ) ( ) ( )( )1 ,MCS MCS MCSi R i PER iρ = − H  (2.32) 

Simulations in Appendix D show that EESM is accurate-enough for the throughput 

prediction simulations of this thesis. 

2.2.2.3.3 Practical application to throughput prediction 

 On Figure 9, a practical application of EESM and degraded capacity is illustrated 

for the IEEE802.16e [16e05] Convolutionally Turbo-Coded (CTC) system. The set of 

MCS considered here ranges from QPSK with code rate ½ to 64QAM, rate 5/6, the 

(uncoded) packet length is fixed to 120 Bytes. The channel model assumed is the urban 

micro model of [B05]. The average throughput over a large number of independent 

channel trials is plotted, assuming an Adaptive Modulation and Coding (AMC) strategy 

that maximizes the throughput under perfect CSI, for a target PER of 5%. The channel 

codeword is mapped onto subcarriers that are pseudo-randomly interleaved over the 

whole 10 MHz bandwidth (PUSC). The solid curves (blue and red) represent the AMC 

throughput with either perfect (ideal) error prediction and with EESM. It can be checked 

that EESM provides an almost perfect error prediction (the standard deviation observed 

when optimizing β  is around 0.2dB). The dashed curve represents the average degraded 

capacity with a 4Γ = dB degradation factor, and the dotted curve represents the Shannon 

capacity. It can be observed that over the set of average SNRs for which an MCS 

matching the PER target can be found, the degraded capacity also provides a fairly 

accurate throughput estimate.  
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Figure 9: Average Spectral Efficiency in IEEE 802.16e PUSC mode with perfect 

channel knowledge 

 

2.2.2.3.4 Conclusion on link-to-system interface 

Degraded capacity and EESM are two interesting tools to predict the throughput 

performance of a system. The latter presents the advantage of capturing the exact set of 

MCS of the system, and achieving a good error prediction accuracy, while the former can 

be “easily” obtained by inserting a degradation factor and a maximum rate saturation 

inside achievable rate expressions. Note that more advanced models are being 

investigated in the literature, such as the MIESM, which uses mutual information under 

finite alphabet constraint. However, the degraded capacity presents the advantage of 

having a simpler expression that lends itself easily to convex optimization. We will 

investigate in this thesis the practical adaptation of the degraded capacity and EESM 

methodologies for cooperative SISO and MIMO links in §5.2.3.2.  

 

2.2.2.4 From link-level to system-level simulations 

The link-to-system interface, whether it is based on EESM or degraded capacity, 

shall ultimately be used as the input of a system-level simulator. In [VLK07], we publish 

some preliminary system-level simulation results for cooperative DF and CF protocols. 

The modeling of phenomena such as the shadowing correlation or the frequency-
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selectivity of the co-channel interference can have a significant impact on the conclusions 

that can be drawn from such simulations. In §5.4 we present a Quasi Monte-Carlo 

methodology some system-level simulations and discuss the achievable rate performance 

of DF and CF strategies in celluar deployment topologies. 

 

2.3 Conclusions 

In this chapter we have introduced the main system assumptions that will provide 

the framework for the subsequent chapters. Important assumptions include relay 

duplexing, transmit power constraints and channel model. The theoretical background on 

the relay channel is introduced along with capacity bounds and coding strategies for the 

relay channel (e.g. the cut-set bound, the Decode-and-Forward and Compress-and-

Forward strategies). Finally, the connection is made between information-theory and 

practical system design. 
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Chapter 3: Capacity bounds for the Gaussian MIMO relay 

channel - A convex optimization framework 

3.1 Introduction and overview of our contribution 

In the previous chapter we have overviewed the state-of-the-art on the relay 

channel. Until recently, the vast majority of studies on cooperative relaying assumed 

single antenna devices, possible forming VAAs. However, it is now possible to integrate 

multiple antennas not only in infrastructure devices (e.g. base stations, fixed relay 

stations) but also in mobile devices (e.g. handsets), and to exploit MIMO Channel State 

Information (CSI) not only at the receiving node (CSIR) but also at the transmitting node 

(CSIT). Point-to-point MIMO with full CSI is now a well investigated topic: the transmit 

covariance that attains the Gaussian MIMO channel capacity is derived by Telatar in 

[T99], while the maximization of various other cost functions is performed in [PCL03]. 

The mature knowledge of the point-to-point MIMO channel has supported the 

standardization activities in 3GPP-LTE and IEEE802.16m: for a given channel and 

antenna configuration the capacity can be computed exactly, and every coding and 

resource allocation strategy can be benchmarked to this reference. Recently, cooperative 

relaying has been introduced in standardization bodies such as IEEE802.16 j and m and 

immediately a flurry of coding strategies (most of them probably patented) were proposed 

by various companies and universities. However, it is very difficult to compare these 

strategies with each other and it is even unclear how much increase of e.g. spectral 

efficiency can be theoretically expected by introducing a relay at a given location in a 

cell, not only at the system-level but even at the link-level. This situation is mainly due to 

the lack of theoretical results on the MIMO relay channel, even for the simplest three-

node topology. Thus, a necessary preliminary step towards a better understanding of the 

impact of relays in future radio access networks is the extension of the capacity bounds 

(CSB, AF, DF, CF) to the MIMO case. This topic was still largely unexplored at the 

beginning of this thesis, especially in the full CSI case, and we therefore decided to focus 

on it.  

We therefore consider in this chapter a single Relay (R) which cooperates with a 

Source (S) and a Destination (D) to maximize the information rate from S to D. The 
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number of antennas at S, R and D are respectively denoted 
S

N , 
R

N  and 
D

N  and each 

can be greater than 1. Static channels and full CSI are assumed in this chapter (see 

§2.2.1.1). For reasons explained in §2.1.3 we only briefly address full-duplex relaying 

and focus more on a “fixed-dynamic” TDD protocol with a relay-receive slot of duration 

denoted by [ ]0;1t ∈  followed by a relay-transmit slot of duration ( )1 t− . In [WZH05], an 

upper-bound and several lower bounds are derived for the full-duplex MIMO relay 

channel with full CSI. As explained later in this chapter, the upper-bound in [WZH05] is 

in general larger than the CSB and besides its numerical evaluation is very 

computationally complex. In [LVH05], two DF strategies are introduced which are shown 

to improve the achievable rates bounds in [WZH05]. However, these bounds are still 

restricted to the full-duplex MIMO relay channel and moreover no generic numerical 

evaluation procedure is proposed therein. In [YE07][AES05], a Diversity Multiplexing 

Tradeoff analysis of the full- and half-duplex MIMO relay channel is carried on. The 

limitation of the DMT tool is that it does not provide actual values for achievable rates 

and capacity but only trends at high SNR. In [MVA07][HW07], Source and Relay 

precoders are derived for Linear Relaying (LR) with full MIMO CSI. However, as stated 

in §2.1.4.3 the problem of LR in the single-relay TDD case is its poor achievable rate 

performance. 

This chapter contributes to the theoretical study of the MIMO relay channel with 

full CSI as follows: 

• The CSB is formulated as a convex optimization problem for both full-duplex and 

TDD relaying (§3.3). In the full-duplex case, this upper-bound on capacity is tighter 

than the one proposed in [WZH05]. In the TDD case, the formulation is obtained by 

exploiting the convexity-preserving property of perspective function [BV04].  

• A convex formulation of the achievable rates of DF strategies with either partial or 

full decoding at the relay is obtained for TDD relaying (§3.5). Two generic 

procedures are proposed to efficiently compute these upper and lower bounds. For 

this purpose, various tools are employed from optimization theory and algorithms as 

well as differentiation techniques. The reader is refered to Appendix A and Appendix 

B for a review of these tools. 

• Sub-optimum source and relay precoder structures are proposed for the DF strategy 

with full decoding. In this case, either analytical expressions can be derived from 
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KKT conditions (§3.5.3.1) or at least the problem dimensions can be reduced. 

(§3.5.3.2)  

 

Note that parts of this work were published in [SMVC08], which is extended in 

[SMVC08b] by including the convex formulation in the TDD case, the use of patterned 

derivatives and a discussion on implementation constraints.  

3.2 The Cut-Set Bound with full MIMO CSI 

In this section we show that the computation of the CSB can be formulated as a convex 

optimization problem in the full-duplex and TDD relaying cases. Procedures to solve this 

problem are then proposed. These procedures will be directly applicable to DF coding 

strategies in §3.5. 

3.3 Formulating the CSB as a convex problem 

3.3.1 Full-Duplex Relaying Case 

The channels from S to D, S to R and R to D are denoted respectively 0H , 1H  and 2H . 

Moreover, unless explicitly stated otherwise, each node is subject to a maximum transmit 

power constraint, denoted by 
S

P  and 
R

P  for the source and relay respectively. In full-

duplex MIMO relaying, the signals received at the relay and destination can be written as 

in [WZH05]: 

 

1

0 2

R S R

D S R D

= +

= + +

y H x n

y H x H x n
 (3.1) 

where circularly symmetric complex white Gaussian noise of unit variance is assumed at 

the relay and destination, i.e. ( ),
RR N

n 0 IN∼ �  and ( ),
DD N

n 0 IN∼ � . The capacity 

FD
C  of the full-duplex relay channel is upper-bounded by the cut-set bound ,CSB FD

C  

whose expression is given by equation (3) in [WZH05]: 

 
( )

( ) ( )( ),
,

max min ; , , , ;
S R

FD CSB FD S D R R S R D
p

C C I I≤ =
x x

x y y x x x y  (3.2) 

where the maximization is performed over the joint distribution of the source and relay 

codebooks ( ),S Rp x x . The authors in [WZH05] show that the optimum ( ),S Rp x x  is 

Gaussian and conclude that the optimization of (3.2) must be carried on w.r.t. three 

matrices 
H

S S S
E   R x x� , 

H

R R R
E   R x x�  and the cross-correlation 

H

S R
E   x x . This 

optimization seems highly non-trivial and non-convex. Therefore the authors exploit 
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some matrix inequalities and introduce a scalar parameter ρ  that captures the cross-

correlation. They finally obtain (see Theorem 3.1 in [WZH05]) an upper-bound which 

involves a maximization only over 
S

R , 
R

R  and ρ : 
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 (3.3) 

Although its derivation is very elegant, this bound unfortunately suffers several 

restrictions:  

• It is in the general case strictly larger than the CSB (e.g. equality with the CSB 

requires 
S R

N N≤ ) 

• Although 
A

C  and 
B

C  are concave in 
S

R  and 
R

R  for a fixed ρ , the problem is not 

convex in ( ), ,S R ρR R and thus the proposed algorithm in [WZH05] includes a non-

convex one-dimensional optimization over ρ .  

• Its numerical evaluation is computationally intensive. Indeed, it is not possible to 

obtain a closed-form expression for the derivatives of 
B

C  w.r.t. 
S

R  and 
R

R . 

Therefore, at each step of the optimization where a gradient shall be computed,  we 

have to evaluate numerically the derivative with respect to each component of these 

two matrices, which requires a number of evaluations of 
B

C  that is proportional to 

2

S
N  (resp. 

2

R
N ), and each evaluation of 

B
C  requires by definition to solve a one-

dimensional optimization with respect to parameter a . 

The above-mentioned limitations can be overcome by considering the joint 

covariance matrix:  

 

H

S S R

SR
H

R S R

E

E

    
    

R x x
R

x x R
�  (3.4) 

Let also define the following matrices: 

   and  
S S R R S RS N N N R N N N× ×

      D I 0 D 0 I� �  (3.5) 

From (3.4) and (3.5), the following relationships hold: 
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   and  H H

S S SR S R R SR R
= =R D R D R D R D  (3.6) 

Note that if 
SR

R  is PSD, then 
S

R and 
R

R  are PSD too:  

 0 0 and 0
SR S R

⇒R R R� � �  (3.7) 

Indeed, for any two vectors SN∈x �  and RN∈y � , defining 
H

S
x D x� � and 

H

R
y D y� � , the 

following holds: 

 

(a ) (b)

(a) (b)

0

0

H H H H

S S SR S SR

H H H H

R R SR R SR

= = ≥

= = ≥

x R x x D R D x x R x

y R y y D R D y y R y

� �

� �
 (3.8) 

where (a)  comes from equation (3.6) and (b)  from the positive semi-definiteness of 

SR
R . Note that (3.7) is a well-known result from matrix algebra: any principal submatrix 

of a PSD matrix is also PSD. 

The cut-set bound (3.2) can therefore be expressed as: 

 
[ ]( )

( ) ( )

0

, 0 2

1
0

max min , , ,

s.t. tr   and  tr

SR
CSB FD SR S SR

H H

S SR S S R SR R R

C

P P

    
=    

    

≤ ≤

R

H
R D R H H

H

D R D D R D

C C
�  (3.9) 

The objective is concave on the PSD cone, because it is the pointwise minimum of two 

concave functions[BV04]. The constraints are affine. Therefore the problem is convex. 

Thus, we can rely on the convex optimization literature (see Appendix B) to solve the 

problem efficiently. 

3.3.2 TDD Relaying Case 

Three TDD relaying protocols have been defined in §2.1.3.1. In this section, we consider 

the more general and more complex Protocol III, from which Protocols I and II can be 

easily derived. The CSB can be expressed as follows (see equation (77) in [HZ05]): 

 

[ ] ( )
{ }

( ) ( ) ( )
( ) ( ) ( )

(1) (2) (2)
,

0;1

(1) (1) (1) (1) (2) (2) (2)

(1) (1) (1) (2) (2) (2)

, , ,

max min ,

; , 1 ;

; 1 , ;

RS S

CSB TDD A B

A S R D R S D R

B S D R S R D

t p

C C C

C tI t I

C tI t I

∈
=

= + −

= + −

x x x

x y y x 0 x y x

x y x 0 x x y

�

�

 (3.10) 

where the superscript 
( )i

 indicates the slot during which the signal was transmitted or 

received. Using similar arguments as in the full-duplex case, the cut-set bound for the 

TDD MIMO relay channel can be expressed as: 
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[ ]
{ }

( ) ( )

( ) ( ) [ ]( )

( ) ( ) ( )

(1) (2),
0;1

0(1) (2)

0

1

(1) (2)

0 0 2

(1) (2) (2)

, 0, 0
max min ,

, 1 ,

, 1 ,

s.t. 

tr  ;  tr  ;  tr

S SR

CSB TDD A B

A S SR S

B S SR

H H

S S S SR S S R SR R R

t
C C C

C t t

C t t

P P P

∈
=

  
+ −  

  

+ −

≤ ≤ ≤

R R

H
R R H D

H

R H R H H

R D R D D R D

C C

C C

� �

�

�  (3.11) 

This problem (3.11) is convex in ( )(1) (2),
S SR

R R  for a given t , but convexity in 

( )(1) (2), ,
S SR

tR R  cannot be claimed at this stage. However, let us introduce the following 

changes of variables into (3.11): 1t t� , 2 1t t−� , 
(1) (1)

1S S
tQ R�  and 

(2) (2)

2SR SR
tQ R� . The 

problem now reads: 

 

{ }

( )

( ) [ ]( )

( ) ( )
( )

(1) (2)
1 2

,

0(1) (2)

1 1 2 2 0

1

(1) (2)

1 1 0 2 2 0 2

(1) (2)

1 2

(2)

2

0, 0, 0, 0
max min ,

/ , / ,

/ , / ,

s.t. 

tr 0 ;  tr 0 ;

tr 0 ;   

S SR

CSB TDD A B

A S SR S

B S SR

H

S S S SR S S

H

R SR R R

t t
C C C

C t t t t

C t t t t

t P t P

t P t

> >
=

  
+  

  

+

− ≤ − ≤

− ≤

Q Q

H
Q Q H D

H

Q H Q H H

Q D Q D

D R D

C C

C C

� �

�

�

1 2 1 0t+ − ≤

 (3.12) 

Note that in (3.12) the trivial cases 0t =  and 1t =  were excluded from the domain. 

Indeed, in these two extreme cases it can easily be checked that cooperative relaying 

degenerates into point-to-point MIMO. The function ( ) ( ): , /g t tf tX X�  defined on 

M

+ ++×S �  is the perspective (cf. sec 3.2.6 in [BV04]) of the function ( ): ,f X X HC�  

which is concave on 
M

+
S , therefore g  is concave on 

M

+ ++×S � . The problem (3.12) is 

therefore convex in standard form. 

 

3.4 Computing the CSB 

The previous section has shown that the CSB can be expressed as the solution of a 

convex problem in the full-duplex and TDD cases. Since it does not seem possible to 

derive a closed-form expression of the solution of (3.9) and (3.12), efficient procedures 

are sought hereafter to solve them numerically. We focus on solving (3.12) from which 

the solution of the simpler problem (3.9) will be straightforward. 
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 We start by writing the equivalent epigraph [BV04] form of (3.12) such that 

closed-form expressions of partial derivatives can be found for the objective and the 

constraints: 

 

( )

( ) ( )
( )

(1) (2)
1 2

,

(1) (2)

1 2

(2)

2 1 2

, , , ,

min

s.t.

0 ;  0

tr 0 ;  tr 0 ;

tr 0 ;   1 0

S SR

CSB TDD

A B

H

S S S SR S S

H

R SR R R

t t

C

C C

t P t P

t P t t

ε
ε

ε ε

∈
= − −

− ≤ − ≤

− ≤ − ≤

− ≤ + − ≤

Q Q

Q D Q D

D Q D

X

 (3.13) 

where  

 S S RN N N+

++ ++ + +× × × ×X S S� � � �  (3.14) 

The optimization problem in equation (3.13) needs to be carried out with respect to three 

real-valued variables and two PSD matrices. The computation of closed-form expressions 

for the partial derivatives and gradients with respect to the time-sharing parameters 1t  and 

2t  and to the structured (here Hermitian) matrices 
(1)

S
Q  and 

(2)

SR
Q  is detailed in §A.2. 

From (6.14), let define the following parameterization of matrices 
(1)

S
Q  and 

(2)

SR
Q : 

 ( )( )*
(1) (1) (1) (1), ,
S S S S

Q r c cF�  (3.15) 

 ( )( )*
(2) (2) (2) (2), ,
SR SR SR SR

Q r c cF�  (3.16) 

In order to simplify the notations, all the variables in the problem are stacked into the 

following vector: 

 ( ) ( ) ( ) ( )( )(1) (1) (2) (2)

1 2, , , , , ,
T

T T T T

S S SR SR
t tεv r c r c�  (3.17) 

and the set V  is defined such that 

 ( )(1) (2)

1 2, , , ,
S R

t tε∈ ⇔ ∈v Q QV X  (3.18) 

Moreover, the inequality constraints in (3.13) are denoted as ( ) 0jf ≤v , 1,...,j J=  and 

stacked into a vector-valued function f as follows: 

 ( ) ( ) ( )( )1 ,...,
T

Jf ff v v v�  (3.19) 

Using the notations (3.15)-(3.19), the problem can now be solved using the derivatives  

and gradient expressions of §A.2 and the algorithms of Appendix B. Two alternative 

ways of solving (3.13) are now presented.  
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3.4.1 Dual Method 

A procedure to solve the dual problem of (3.13) is detailed in §B.3. Here the primal 

problem is convex and Slater’s condition for strong duality holds. Indeed, the following 

point for instance is strictly feasible: 

 
( )

( )0

min ,1 1
0, , , ,

4 4 8 8S S R

S RS
N N N

S S R

P PP

N N N
+

 
∈  + 

x I I X��  (3.20) 

which satisfies Slater’s condition. The computation of the dual function ( )g µ  at a given 

0µ  requires to minimize the Lagrangian ( )0,v µL  over V . The gradient of the 

Lagrangian ( )0,∇ v µL  can be computed in closed-form from the formulas in Appendix 

A. However, a straightforward application of gradient descent methods cannot guarantee 

that the sequence of points belong to V . As explained hereafter, the projection 
V
P  on the 

set V  is simple to implement and we therefore resort to the GPM, which is described in 

details in §B.1. The projection of 1t  and 2t  onto ++�  can be practically handled by 

restricting their domain to a closed interval [ );η +∞  where 0η > . In this case their 

projections are respectively ( )1max ,t η  and ( )2max ,t η . By selecting a small enough 

η , the error introduced on the final solution can be made arbitrarily small. The projection 

of 
(1)

S
Q  and 

(2)

SR
Q  onto the PSD cone follows (6.36). Having minimized the Lagrangian, it 

remains to maximize the dual function. As explained in §B.3, a closed-form expression of 

a subgradient is easily found and we can therefore resort to the subgradient method. 

However, as explained in §B.3 step size selection strategies for the subgradient method 

are empirical and in our simulations the procedure described in the next section for 

solving the primal problem based on the barrier method turned out to converge 

significantly faster. 

3.4.2 Barrier Method 

In order to solve (3.13), a more straightforward approach is to use an interior-point 

method to solve the primal problem. The barrier method is described in §B.2. Closed-

form expressions for the derivatives and gradient of log-barrier functions are obtained 

from the formulas in §A.1 and §A.2. For instance,  

 
( )

( )( )
( )

( )
* (1)

(1)

(1) (1) (2) (2)

1 2 (1) ,

1
, , , , , , vec

S

T

j

j S S SR SR u S
j S

f
t t

f
φ ε

  ∂
=     ∂  

c

v
v r c r c L

v Q
D  (3.21) 
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where (1),u S
L  is the matrix that maps the ( )1 / 2S SN N −  independent complex 

components from the upper-part of 
(1)

S
Q  onto the components of indices 

( )3 1, ,3 1 / 2S S S SN N N N+ + + + −…  of vector v . The barrier method can start from 

any interior point such as the one given by (3.20). In our simulations it converges much 

faster than the bound in [WZH05] and also significantly faster than the dual method in the 

section above, and was therefore the preferred method for simulation. 

3.5 Decode-and-Forward with full MIMO CSI 

The partial and full DF strategies for the Gaussian scalar TDD relay channel have been 

introduced in §2.1.4.1. In this section, we extend the achievable rate expressions to the 

Gaussian MIMO relay channel.  

3.5.1 Non-Cooperative Decode-and-Forward 

We start by treating the simple case of non-cooperative DF (NCDF) as defined in 

§2.1.4.1. It will be used as a benchmark to highlight the gains due to cooperation in 

simulations. The achievable rate for NCDF is: 

 
( ) ( ) ( )( )

( ) ( )

(1) (2)

(1) (2)

, 1 2

(1) (2)

0;1 , 0, 0
max min , , 1 ,

s.t.         tr ; tr

RS

NC DF S R

S S R R

t
R t t

P P

  ∈
−

≤ ≤

R R
R H R H

R R

C C
� �

�
 (3.22) 

 

[ ]
( ) ( ) ( )( )

( ) ( )
( ) ( )

, 1 2
0;1

1 2

1 2

ˆ ˆmax , , 1 ,

ˆ ˆ, ,

ˆ ˆ, ,

NC DF S R
t

S R

S R

R t P t P

P P

P P

∈
= −

=
+

H H

H H

H H

C C

C C

C C

 (3.23) 

where 

 ( ) ( ) ( )
0

ˆ , max ,  s.t. trP P≤
R

H R H RC C
�

�  (3.24) 

Note that problem (3.24) is the MIMO channel capacity with CSIT as solved by Telatar 

in [T99]. From (3.23), it is clear that the achievable rate of NCDF is upper-bounded by 

the minimum between the capacity of the first hop link and that of the second hop link:  

 ( ) ( )( ), 1 2
ˆ ˆmin , , ,

NC DF S R
R P P≤ H HC C  (3.25) 

3.5.2 Partial Decode-and-Forward 

The coding scheme is the same as in the scalar case §2.1.4.1. The source transmits a 

first message 0ω  at a rate 0R  using a signal ( )(1)

0S ωx  during the first slot. The relay 
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decodes 0ω̂  and transmits ( )(2)

0
ˆ

R ωx  during the second slot while S transmits 

( ) ( ) ( )(2) (2) (2)
, ,0 1 0 0 1 1,S S Sω ω ω ω= +x x x . Because we assume a synchronized scenario, the 

signals ( )(2)

0R ωx and ( )(2)
,0 0S ωx  are correlated, whereas 1ω  is mapped onto an 

independent signal ( )(2)
,1 1S ωx  transmitted at rate 1R  using superposition coding. The 

destination successively decodes 0ω̂  and 1ω̂ . The derivation of the achievable rate is a 

straightforward extension of the proof of Prop. 2 in [HZ05]: 

 
( )

( )

(1) (2) (2) (2)
,0 ,1

(1) (2) (2)
,1 ,0

PDF 0 1
0;1 , , , ,

0;1 , 0, 0, 0

max

max min ,

RS S S

S S SR

A B

t p

t

R R R

R R

  

  

∈

∈

= +

=

x x x x

R R R� � �

 (3.26) 

 ( ) ( ) ( )(1) (2)

1 ,1 0 , 1 ,
A S S S

R t t+ −R H R H DC C�  (3.27) 

 ( ) ( )
( )

( )

[ ]
(2)

,1(1)

0 0 0 2(2)

,0

 , 1 ,
S S R

S R S

S N N N

B S

SRN N N

R t t
× +

+ ×

  
  + −
    

R 0
R H H H H

0 R
C C�  (3.28) 

where ( )(1) (1) (1) H

S S SE  
 R x x� , ( )(2) (2) (2)

,1 ,1 ,1

H

S S SE  
 R x x�  and 

( ) ( ) ( ) ( )(2) (2) (2) (2) (2)
,0 ,0 ,0

TT HT H

SR S R S RE     
     

R x x x x�  and the transmit power 

constraints can be written as: 

 ( ) ( )(1) (2)

,0tr   ;  tr H

S S R SR R R
P P≤ ≤R D R D  (3.29) 

 ( ) ( )(2) (2)

,1 ,0tr tr H

S S SR S S
P+ ≤R D R D  (3.30) 

The problem (3.26) with the constraints (3.29) and (3.30) is similar to (3.12) and can be 

turned into a convex problem in standard form just like (3.13). The Source and Relay 

precoders during the first and second slot and the time sharing variable which maximize 

the achievable rate of the partial DF strategy can be computed by exactly the same 

procedures as the CSB in §3.4.  

3.5.3 Full Decode-and-Forward 

The partial DF strategy requires to implement superposition coding at the source and 

successive interference cancellation at the destination. In this section, we consider the full 

DF (FDF) strategy already introduced in §2.1.4.1 for the scalar case, which allows for a 

reduced implementation complexity at the expense of a lower achievable rate. Remember 

that FDF is a variant of partial DF in which the relay decodes the whole message and the 
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source does not superimpose a new message during the second slot (i.e. 1 0R = ). In this 

case, the achievable rate simplifies as: 

 ( )( )
(1) (2)FDF ,1 ,2

0;1 , 0, 0
max min , 1

S SR

A B B
t

R tR tR t R
  ∈

= + −
R R� �

 (3.31) 

s.t. ( )(1)

1 ,
A S

R R HC�  (3.32) 

 ( )(1)

,1 0 ,
B S

R R HC�   (3.33) 

 [ ]( )(2)

,2 0 2,
B SR

R R H HC�  (3.34) 

 ( ) ( ) ( )(1) (2) (2)tr   ;  tr   ;  trH H

S S R SR R R S SR S S
P P P≤ ≤ ≤R D R D D R D  (3.35) 

For any fixed [ ]0;1t ∈ , it can be noticed that
FDF

R  is a non-decreasing function of ,2B
R , 

which only depends on 
(2)

SR
R . Therefore the optimization (3.31) can be carried out in two 

steps: 

 
(2),2 ,2

0

ˆ max
SR

B BR R
R �
�  (3.36) 

 
(

( )
( ) ( )(1)

(1)

1

FDF (1)

0 ,2
0;1 , 0

/ , ,
max min

ˆ/ , 1S

S

S B
t

t t
R

t t t R∈

  
=  

+ −  
Q

Q H

Q H

C

C�
 (3.37) 

where the trivial case 0t =  was again excluded from the domain. As before, problems 

(3.36) and (3.37) are convex and can be solved using the same procedures as for the CSB 

and PDF. However, we decide to evaluate sub-optimum precoders at the Source and 

Relay with a structure that further reduces the optimization complexity. 

 

3.5.3.1 Sub-optimum Source precoder during 1st slot 

Let first consider the problem (3.37) in which the source precoder during the first time 

slot is optimized. Let introduce the SVD of 0H  and 1H : 

 ( ) ( )0 0 0 0 1 1 1 1diag  and diagH H= =H U λ V H U λ V  (3.38) 

We arbitrarily impose the following structure to the source covariance matrix:  

 ( ) ( )
0 1

(1)

0 0 0 1 1 1diag diagH H

S
= +

R R

R V p V V p V

� �

	

�

� 	

�

�
 (3.39) 

The structure stems from the intuition that the source shall transmit part of its power on 

the eigenmodes of the channel to the relay and the rest on the eigenmodes of the channel 

to the destination (note the similarity with the precoder optimization in [HKE07]). Let 0L  
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and 1L  denote the number of non-zero singular values of 0H  and 1H . Inserting (3.38) 

and (3.39) into (3.32) and (3.33) gives: 

 ( )

( )

1

0

2 1 0 1 1 1 1

(a) (b)
2

2 1 1 1 2 1, 1, 11

(a ) (b)
2

,1 2 0 0 0 2 0, 0, 01

log

    log log 1

log log 1

R

R

D

H H

A N

LH

N i ii

LH

B N i ii

R

p J

R p J

λ

λ

=

=

= + +

≥ + = +

≥ + = +

∑

∑

I H R H H R H

I H R H

I H R H

�

�

 (3.40) 

Where (a)  comes from the Minkowski determinant inequality and (b)  comes from 

(3.39). Inserting these lower bounds on 
A

R  and ,1B
R  into the epigraph form of (3.37) 

yields the following lower-bound on
FDF

R : 

 
[ ]

( )
0 10 1

, 0;1 , ,
min

L L

FDF
t

R
ε

ε
∈ ≥ ≥

≥ − −
p 0 p 0

 (3.41) 

s.t. 1 0tJε − ≤  (3.42) 

 ( )0 ,2
ˆ1 0BtJ t Rε − − − ≤  (3.43) 

 
0 10 1 0T T

L L SP+ − ≤1 p 1 p  (3.44) 

Before solving the above-defined problem, it can first be noticed that when the source-

relay and source-destination channels are orthogonal, equality occurs in (3.40). If 0H  and 

1H  have i.i.d. complex Gaussian components, let consider the distribution of the angle φ  

between any two rows 0h  and 1h  of respectively 0H  and 1H . For 1
S

N >  the quantity 

( )
2 2 2 2*

1 0 0 12 2
/ cosTξ φ=h h h h�  is Beta-distributed with parameters 1 and 

1
S

N − [J06]. This distribution concentrates around 0  as 
S

N → +∞ . Therefore, the 

source precoder that solves (3.41) becomes optimum for (3.37) as 
S

N  grows. 

We now derive a procedure for solving (3.41). Introducing the perspective function as in 

(3.37) allows to turn (3.41) into a convex problem which has a reduced number of 

dimensions compared to (3.41) leading to a reduction of the computational complexity. 

Unfortunately, writing the KKT conditions for this problem does not seem to lead to a 

closed-form expression. However, for a fixed t  in (3.41), the optimization w.r.t. 

( )1 2, ,ε p p  is also a convex problem for which the KKT conditions lead to: 

 ( ) ( )2 2

0, 0, 1, 1,
ˆ ˆ1/ ; 1/

i i i i
p pα λ β λ

+ +

= − = −  (3.45) 

The solution (3.45) can be obtained by a water-filling algorithm with two water levels 

0α >  and 0β >  which are not independent due to the total source power constraint. 

Define ( )
11 1 /T

L S
P P1 p�  the fraction of Source power transmitted on the source-relay 
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channel eigenmodes, while the rest 11 P−  is transmitted on the eigenmodes of the source-

destination channel. Finding α  and β  amounts to finding the optimum [ ]1
ˆ 0;1P ∈ . Let 

first assume that both constraints (3.42) and (3.43) are active at the optimum, which 

yields: 

 ( )1 0 ,2
ˆ1 BtJ tJ t R= − −  (3.46) 

It can be checked that 1 0J =  at 1 0P =  and 1J  is non-decreasing with 1P  . Likewise, 0J  

is non-increasing with 1P  and equals 0 at 1 1P = . Therefore, the optimum 1P̂  is found by 

solving (3.46) under the condition that ( ) ,2 1
ˆ1 Bt R tJ− ≤  at 1 1P = . When this constraint is 

not satisfied, either (3.42) or (3.43) is not active and the solution is trivial (i.e. 1
ˆ 0P =  or 

1
ˆ 1P = ). In order to solve (3.41), it remains to perform a one-dimensional optimization 

with respect to the variable t . Fortunately, it can be checked numerically that the solution 

( )ˆ tε  of (3.41) for a given t  turns out to be a unimodal function of t  over the interval 

[ ]0;1 , i.e. a function that is either strictly increasing or strictly decreasing. Therefore 

efficient one-dimensional search techniques such as the Golden Section Search (see 

appendix C.3 in [B99]) can be employed to find the optimum t̂ .  

To summarize, a sub-optimum approach to source precoder optimization with 

reduced complexity is proposed in this section. It consists in transmitting a fraction of the 

source power on the eigenmodes of the channel to the relay and the rest on the 

eigenmodes of the channel to the destination. The power assignment is provided by a 

water-filling algorithm with two water levels that are related by the total source power 

constraint. This precoder tends to become optimum as the number of antennas at the 

source becomes large.  

 

3.5.3.2 Sub-optimum  Source and Relay precoder during 2nd slot 

Let us now consider problem (3.36) in which the source and relay precoders are 

optimized during the second time slot under an individual power constraint. Let us also 

introduce into (3.36) the SVD of the joint channel [ ] ( )2 0 diag H=H H U λ V  and 

perform the following change of variable: 

 (2)H

SR
R V R V�  (3.47) 

The problem (3.36) can be rewritten as: 
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( ) ( )( )

( ) ( )

,2 2
0

ˆ max log diag diag

s.t. tr   ;  tr

D

H

B N

H H H H

S S S R R R

R

P P

= +

≤ ≤

R
I λ R λ

D VRV D D VRV D

�  (3.48) 

As in appendix B of [WZH05], we arbitrarily enforce a diagonal structure 

( )2diag=R p . This turns the matrix optimization problem (3.48) into the following 

vector optimization: 

 2

2

2 2,
0

1

2 2

max log (1 )

s.t.  ; 

L

i i

i

T T

S R

p

P P

λ
≥

=

+

≤ ≤

∑
p

a p b p

 (3.49) 

where L  is the number of non-zero eigenvalues of [ ]2 0 H H  and the vectors a  and b  

have their components defined by  
2

,1ia
S

R

N

N j ij
V +=∑� and 

2

,1ib
RN

j ij
V

=∑� . The 

problem (3.49) can then be solved at a much lower computational cost than the original 

one.  

Note that if we replace the individual power constraints in (3.48) by a sum-power 

constraint 

 ( ) ( )(2)tr trSR S RP P= ≤ +R R  (3.50) 

then Hadamard determinant inequality can be applied as in [T99]: 

 ( ) ( )( ) ( )2

,

1

diag diag 1
D

D

N
H

N i i i

i

Rλ
=

+ ≤ +∏I λ R λ  (3.51) 

with equality if R  is diagonal. Since the constraint (3.50) depends only on the diagonal 

components of R , it is clear that the optimum R  in (3.48) is diagonal. In other words, 

under a total transmit power constraint at the source and relay, precoding with the right 

singular vectors of the joint channel [ ]2 0 H H  is optimal. However, under individual 

power constraints, this structure is in general suboptimum because the individual power 

constraints depend on both diagonal and non-diagonal components of R . 

3.6 Simulation Results 

In this section, simulation results are presented for the TDD MIMO relay channel. 

The upper and lower bounds on capacity are evaluated and the sub-optimality of the 

precoder optimization procedures in §3.5.3.1 and §3.5.3.2 is discussed. 

The simulations below assume 4SN =  antennas at the source and 2R DN N= =  

antennas at the relay and destination. Such an antenna configuration is well suited to a 

cellular downlink scenario. The source and relay are subject to the same power constraint 
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1S RP P= = . The MIMO channel on the S-D, S-R and R-D links is modeled by i.i.d. 

complex Gaussian components of respective variance 0γ , 1γ  and 2γ . Therefore, under 

the above-defined power constraints, 0γ , 1γ  and 2γ  represent the average SNR on the S-

D, S-R and R-D links. The destination is far from both S and R, with 0 2 0dBγ γ= = . 

The average SNR 1γ  on the S-R link is varied from 0dB to 30dB.  

On Figure 10, the average achievable rates of the partial and full DF strategies are 

plotted. For comparison purpose, the average capacity of the S-D link is also plotted with 

(solid line) or without (dashed line) CSIT. In this last case, the source covariance matrix 

that maximizes the ergodic capacity is [T99] ( )/
SS S S NP N=R I . The average capacity 

gain provided by CSIT can be decomposed into an array gain and a waterfilling gain 

[TV05]. Here since 2S DN N=  there is a 3dB array gain plus a large waterfilling gain 

because 0γ  is low. It can be observed that single-hop transmission always outperforms 

non-cooperative DF. This is obvious from inequality (2.20) and the fact that the capacity 

of the S-D link is larger than that of the R-D link. Both partial and full DF achieve a large 

rate increase over non-cooperative DF and single-hop transmission, and are less than 0.5 

bit (per channel use) away from the cut-set bound for 1 15dBγ ≥ . Partial DF outperforms 

FDF only at low 1γ , when the rate becomes limited by the S-R link capacity. It can be 

argued that under the above simulation assumptions, the comparison with non-

cooperative DF and single-hop transmission is unfair since the total transmit power is 

larger for cooperative protocols during the second slot. Therefore, we also plot (dotted 

curve) the achievable rate of the FDF strategy when the sum-power is constrained to 

remain lower than SP  during the second slot. The figure shows that even in this case FDF 

outperforms non-cooperative protocols at 1 5dBγ ≥ . 
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Figure 10: Upper and lower bounds on TDD MIMO relaying channel capacity with 

Source and Relay precoder optimization in a 4x2x2 antenna configuration. 

On Figure 11, various precoder optimization strategies for FDF are compared. The 

highest rate is achieved by matrix convex optimization of the source and relay precoders 

during both slots, using one of the procedures described in §3.4. As stated in §3.5.3.1, the 

vector optimization of the source precoder becomes optimum when SN  is large, but here 

it can be observed that the incurred loss is already small at 4SN =  (only 0.1 bit). An 

additional rate penalty occurs at high 1γ  when the sub-optimum source and relay 

precoder structure of §3.5.3.2 is enforced during the second slot. Overall, the degradation 

due to sub-optimum precoding is lower than 0.5 bit over the whole SNR range. Finally, 

the dashed and dotted curves illustrate the large rate loss when precoders are not 

optimized during the first slot (i.e. ( )(1) /
SS S S NP N=R I ) or during both slots 

( ( )(1) (2) /
SS S S S NP N= =R R I , ( )(2) /

RR R R NP N=R I ). 
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Figure 11: Optimum vs. Sub-optimum precoder optimization for full DF strategy in 

a 4x2x2 antenna configuration. (Legend: N=No optimization, V=Vector 

Optimization, M=Matrix Optimization) 

On Figure 12, the optimum power fraction 1P̂  and the optimum time-sharing t̂  

obtained by the sub-optimum procedure of §3.5.3.1 are plotted vs. 1γ . As expected, when 

the capacity of the S-R link becomes much larger than that of the other links, most of the 

source transmit power during the first slot is assigned to the eigenmodes of 0H , and most 

of the time resource is assigned to the second slot in order to maximize FDFR .  
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Figure 12: Sub-optimum source precoder during the first slot for full DF strategy: 

variation of the time-sharing and power balancing vs. SNR on the Source-Relay link 

 

3.7 Conclusions 

We presented a generic methodology to maximize capacity upper and lower bounds 

on the MIMO relay channel with full CSI in the full-duplex and TDD relaying cases. The 

optimum source and relay transmit covariance matrices and TDD time-sharing parameter 

can be derived by convex optimization, and the gap between the achievable rate and the 

capacity can be quantified for various DF strategies. In particular, we verified that for 

realistic antenna configurations and SNR ranges this gap can actually be quite small. Our 

optimization procedure illustrates the application of several mathematical tools borrowed 

from convex optimization theory, nonlinear programming as well as from complex matrix 

differentiation to the practical problem of precoding for the MIMO relay channel. As 

explained in Chapter 5, the bounds derived here are not direcly applicable to a real system 

but can be easily modified to provide a good estimate of the throughput envelope that can 

be achieved. Moreover, they can also serve as a benchmark when studying the effect  of 

practical implementation impairments such as imperfect CSI. 
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Chapter 4:  Distributed Compression for Cooperative MIMO 

4.1 Introduction and overview of our contribution 

In §2.1.4 we have reviewed coding strategies for the scalar relay channel. We have 

shown by an analysis of achievable rate expressions and verified by simulations the fact 

that the CF strategy outperforms DF and LR when the capacity on the link from the relay 

to the destination becomes large-enough. We have also motivated our focus on TDD 

relaying due to its simpler practical implementation and we have mentioned the reference 

[HZ05] in which the achievable rate of a partial CF (PCF) strategy on the Gaussian scalar 

TDD relay channel is derived. In the PCF strategy of [HZ05], a first message is 

transmitted during the first slot and is WZ-compressed by the relay while a second 

message is transmitted by the source directly to the destination during the second slot. In 

the next section §4.2 of this chapter, we essentially extend these achievable rates to the 

MIMO case. Our contribution is the following: 

• Distributed Gaussian vector compression [GDV04][GDV06] is applied to the specific 

case of CF relaying (§4.2.1) and the effect of this compression on the achievable rate 

of CF is analyzed (§4.2.2). 

• The achievable rate is maximized with full CSI. A closed-form expression of the 

optimum WZ coding rates is derived (§4.2.3.1) which differs from the rate-distortion 

trade-off in[GDV06].  

• It is shown in §4.2.3.2 that during the second slot of the TDD protocol an optimum 

decoding order exists for the messages transmitted by S and R, and this can be used 

to simplify the optimization of the source and relay covariance matrices. Finally, an 

iterative procedure is proposed (§4.2.3.3) which jointly optimizes the compression, 

the transmit covariances and the time resource allocation. 

• Simulations are performed in both uplink and downlink cellular scenarios which 

illustrate the phenomena mentioned above and a comparison with other capacity 

bounds is performed (§4.2.4). 

The first two bullet points are addressed in [SMV07], while the third bullet is included in 

[SMVC08c]. 
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 In §4.2, Compress-and-Forward relaying is applied to TDD in-band MIMO 

relaying with 3 nodes. In §4.3 we try to apply the Compress-and-Forward strategy to 

multiple parallel out-of-band multi-antenna relays or equivalently to a coordinated MIMO 

cellular network, as introduced in §2.1.6. In [C08], the PCF strategy is applied to a set of 

multiple parallel in-band single-antenna relays. However, the achievable rate region 

(equation (3.43) in [C08]) is untractable, partly due to the large number of constraints 

required to define the MAC achievable rate region formed by the multiple parallel relays 

transmitting to the destination. Del Coso therefore proposes to relax the problem by 

considering only the MAC sum-rate constraint. As explained in §2.1.6, the problem is 

simpler for a coordinated cellular network because it can be assumed that the backhaul 

links have fixed capacity. In [MF07], quantization is proposed for a coordinated cellular 

uplink with limited backhaul, and it is shown that large spectral efficiency gains can be 

achieved in spite of the basic source coding at each BS which cannot exploit the 

correlation between the received signals. Our work in §4.3 relies mainly on the more 

advanced distributed coding scheme of [DW04] and [SSS08], in which the signals 

received at each BS are partially decoded and compressed before being processed by a 

Central Procesing Unit. Our contribution essentially consists in a computation of 

achievable rates when the cooperative BSs are equipped with multiple antennas: 

• In §4.3.1 we instanciate the results in [SSS08] for a Gaussian multiple-antenna 

setting with Gaussian codebook, and formulate the achievable rate as a an 

optimization problem with respect to compression noise covariance matrices. In 

particular, we show that the problem is simplifed under a backhaul sum-rate 

constraint. 

• In §4.3.2 we show that the compression noise distribution which maximizes the 

achievable rate in the 3-node case corresponds to the Transform Coding approach 

introduced in [GDV04][GDV06] with the WZ coding rate allocation of [SMV07] 

that is derived in §4.2.3.1. 

• Achievable rates are derived in the case of N-parallel relays in §4.3.3 and an 

achievable rate region in the multi-user case is derived in §4.3.4. 

• Finally, these theoretical results are illustrated by simulations under either per-

link or total backhaul rate constraints in §4.3.5. 

The above four bullets are the subject of several publications [CS08a][CS08b] and 

submissions [CS08c][CS08d].  
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4.2 Compress-and-Forward strategy for the 3-node MIMO relay 

channel 

4.2.1 Signal Model and Achievable Rates 

4.2.1.1 Signal Model and Coding strategy 

The coding strategy assumed here is an extension to the multiple antenna case of 

the partial CF described in [HZ05]. The Source, Relay and Destination are equipped with 

respectively SN , RN  and DN  antennas. The channels from S to D, S to R and R to D are 

all assumed static and are denoted respectively 0H , 1H  and 2H . During the first slot of 

duration t , S transmits a first message 0ω  at rate 0R  using the codeword
3
 ( )(1)

0S ωx . We 

assume that 
(1)
Sx  is a proper [NM93] complex Gaussian vector ( )(1) (1),

SS N Sx 0 RN∼ � , 

although this may not be the optimum distribution, as pointed out in section VI.B of 

[SSS08]. The received signals at R and D read: 

 (1) (1) (1)

1R S R
= +y H x n  (4.1) 

 (1) (1) (1)

0D S D
= +y H x n  (4.2) 

where the superscript ( )i  indicates that the signals are transmitted or received during the 

ith slot. The noise at R and D is also assumed (proper) complex white Gaussian of 

respective covariance 2
RR Nσ=Σ I  and 2

DD Nσ=Σ I . The compression at R, which will 

be detailed in §4.2.1.2, consists in mapping 
(1)
Ry  onto the index 1ω  assuming side 

information 
(1)
Dy  at the destination. The relay forwards 1ω  to D during the second slot of 

duration 1 t−  by transmitting ( )(2)
1R ωx  at rate 1R , while S transmits a new message 2ω  

at rate 2R  by means of the codeword ( )(2)
2S ωx . We denote by SP  and RP  the maximum 

transmit power at S and R during both slots, i.e. ( )( )tr   i=1,2i
S SP≤R  and 

( )(2)tr R RP≤R . The destination successively decodes 1ω̂  and 2ω̂  (the decoding order 

will be discussed in §4.2.3.2). The decompression at D can be modeled as a mapping of 

                                                      

3
 A complete information-theoretic treatment would not define a codeword as length-NS random 

vector but as a length-n sequence of length-NS vectors drawn i.i.d. from a certain distribution. In 

this thesis, we are interested in finding the distribution that maximizes the achievable rate, hence 

the simplified notation used. We rely on [HZ05][GDV06] and [SSS08] for the rate achievability 

proofs, established for n going to infinity. 
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( )(1)
1

ˆ,D ωy  onto 
(1)ˆ Ry , the reconstructed relay observation. After decompression, D decodes 

0ω̂  from ( )(1) (1)ˆ,D Ry y . Finally the achievable rate between S and D is : 

 ( )
0 21

CF
R tR t R= + −  (4.3) 

The rate 
CF

R  needs to be maximized w.r.t. the time-sharing parameter, the distribution of 

the codewords, the compression mapping and the decoding order at the destination. 

Because the received signals at R and D are Gaussian, recently published results can be 

applied to design the compression mapping at the relay, as explained in the next section. 

 

4.2.1.2 Vector Source Coding at the Relay 

In [HZ05], Høst-Madsen et al. show that the achievable rate of partial CF depends on 

the variance of a “compression noise” which differs from the quadratic distortion in 

general. This compression noise was first introduced by Wyner, who derived in [W78] 

the rate-distortion function for source coding with Gaussian source and Gaussian side 

information. In [GDV04][GDV06], Gastpar et al. investigate distributed source coding 

and introduce the Distributed KLT and the Conditional KLT. They show that the rate-

distortion coding of a Gaussian vector source with side information at the decoder is 

achieved by first applying a CKLT and then separately performing WZ coding of each 

CKLT output at a different rate. The results presented is this section II.B can be viewed 

as a special case of [GDV06]. A compression noise vector is defined, and its relationship 

with distortion is clarified. The main difference between our work and [GDV06] will 

arise in §4.2.3.1 where it will be shown that the code which maximizes the CF achievable 

rate is not the same code that minimizes the quadratic distortion, which is the design 

criterion in [GDV06].  

Let first define the Conditional Karhunen-Loeve Transform (CKLT) in the CF 

relaying case. Given the knowledge of 
(1)
Dy , the vector 

(1)
Ry  is Gaussian distributed (see 

e.g. 4.12.1 in [MS00]) of mean: 

 ( )
1(1) (1) (1) (1) (1)

,R D R D D DE
−

=  y y R R y  (4.4) 

and covariance matrix denoted by
(1)

R D
R and equal to: 

 ( )
1

(1) (1) (1) (1) (1)

, ,R R D D D RR D

−

= −R R R R R  (4.5) 

where 
(1)
RR  and 

(1)
DR  denote the covariance of the received signal at R and D, while 

(1)
,R DR  denotes the cross-correlation between the relay and destination observations: 
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 ( )(1) (1) (1) (1)

, 1 0 ,

H
H H

R D R D S D R
E   =  

R y y H R H R� �  (4.6) 

 (1) (1) 2

0 0 D

H

D S Nσ= +R H R H I  (4.7) 

 (1) (1) 2

1 1 R

H

R S Nσ= +R H R H I  (4.8) 

After some matrix manipulations, equations (4.5)-(4.8) yield: 

 ( ) ( ) ( )
11/2 1/2

(1) (1) (1) (1) 2

1 0 0 1S R

H H

S N S S NR D
σ

−

= + +R H R I H R H R H I  (4.9) 

The CKLT can now be defined as the matrix
H

U such that: 

 ( )(1) diag H

R D
=R U s U  (4.10) 

The columns of U  are the eigenvectors of the conditional covariance matrix, and the 

vector s  contains the associated eigenvalues. Note that from (4.9), it is clear that the 

matrix 
(1) 2

RR D Nσ−R I is positive semi-definite and therefore: 

 2    i {1, 2, ... , }
i R

s Nσ≥ ∀ ∈  (4.11) 

It is shown in Appendix C.2 that the rate-distortion coding of vector 
(1)

R
y  with side 

information 
(1)

D
y  at the decoder can be modeled by the following relationship: 

 (1) (1) (1)ˆ H

R R D
= + +y UAU y UAψ UKy  (4.12) 

where 

• ψ  is a vector of  i.i.d. components iψ  of variance iη  called the compression 

noise: 

 ( )0,i iψ ηN∼ �  (4.13) 

•  ( ) ( )diag  with /i i i ia s s η+A a� 
  (4.14) 

•  ( ) ( )
1

(1) (1)

,

H

R D D

−

K I - A U R R�  (4.15) 
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The relationship (4.12) is illustrated on Figure 13:  

 

Figure 13: Source coding of Gaussian vector 
(1)
Ry  with side information 

(1)
Dy  at the 

decoder. 

 

The coding scheme consists in applying a CKLT to each source output 
(1)
Ry , followed by 

independent WZ encoding of each CKLT output sequence iz , where 
(1)H

R
z U y� . The 

destination then performs WZ decoding to obtain ˆiz  and applies the inverse CKLT to ẑ . 

Defining ir  as the WZ coding rate for the thi CKLT output iz , the relationship between 

this rate and the compression noise is: 

 ( )log 1 /i i ir s η= +  (4.16)  

Moreover, defining id  as the squared distortion on the thi component iz  of the 

transformed vector z , the following relationship holds between the compression noise 

and the distortion: 

 ( )/i i i i id s sη η= +  (4.17) 

Inserting (4.17) into (4.16) yields: 

 ( )log /i i ir s d=  (4.18) 

It is shown in Appendix C that the total quadratic distortion is  

 
2(1) (1)

1

ˆ
RN

R R i

i

E dδ
=

 − =  ∑y y�  (4.19) 

The above results are summarized in the following proposition: 

 

Proposition 4.1: 

The source coding of vector 
(1)
Ry  with side information 

(1)
Dy  at the destination can be 

performed at a rate ρ  by applying a Conditional Karhunen-Loève Transform (CKLT) at 

(1)

Ry
HU

Ψ

A

(1)

DKy

U

(1)ˆ
R

yvz ẑ
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the relay followed by separate Wyner-Ziv (WZ) coding of each CKLT output sequence at 

rate 0ir ≥  such that: 

 
1

RN

i

i

r ρ
=

≤∑  (4.20) 

The following relationship holds between the WZ coding rate, the distortion and the 

compression noise for each component of the CKLT-transformed source: 

 
( ) ( )log 1 / log /

i i i i i
r s s dη= + =

 (4.21) 

In particular, the rate-distortion trade-off ( )ρ δ  is achieved by the reverse-waterfilling 

algorithm: 

 
1

     0
with  s.t. 

       

eigN

i

i i

ii

if s
d d

s otherwise

λ λ
λ δ

=

≤ <
= =


∑  (4.22) 

 

Proof: See Appendix C.2. 
 

Note that in the scalar case 1RN = , 1d δ=  and Proposition 4.1 boils down to the rate-

distortion coding results of [W78]. The relationship ( )/i i i i is d s dη = −  shows that the 

compression noise on a component of the transformed vector is approximately equal to 

the distortion when the latter is small. However, when 0ir →  (i.e. no bit is allocated to 

represent the thi eigenmode) or equivalently i id s→ , then iη → +∞ . The last part of 

Proposition 4.1 is the generalization of a well-known result (see e.g. §13.3.3 in [CT91]): 

the rate-distortion function of parallel Gaussian source is obtained by allocating the 

distortion according to a reverse-waterfilling algorithm on the eigenvalues of the source 

covariance matrix. Here, equation (4.22) corresponds to the same algorithm applied to the 

eigenvalues of the conditional covariance matrix of 
(1)
Ry  given 

(1)
Dy . The term reverse-

waterfilling comes from the fact that it can be implemented by progressively increasing 

the distortion level on every component of the transformed vector until the total distortion 

δ  is reached, under the constraint that the distortion on the i th component cannot exceed 

the i th eigenvalue of the conditional covariance matrix. As shown by equation (4.5), the 

latter reduces to the covariance when the product ( ) 1(1) (1) (1)
, ,R D D D R

−
R R R  goes to zero. This 

happens for instance when the SNR at the destination is small, then whatever the value of 

the cross-correlation 
(1)

,R DR , the product ( ) 1(1) (1) (1)
, ,R D D D R

−
R R R  tends towards zero. This also 

happens for instance if ( )(1) /
SS S S NP N=R I  and the channels 0H and 1H  are orthogonal. 
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In these two cases, the CKLT degenerates into a KLT and the side information at the 

destination cannot be exploited to reduce the rate required at the relay to encode its 

observation. 

 

4.2.2 Impact of the Compression on the CF achievable rate 

In this section, we assume that the compression at the relay is performed as 

described in §4.2.1.2, and we apply Proposition 4.1 in order to clarify the relationship 

between the achievable rate of the CF strategy described in §4.2.1.1 and the compression 

noise defined in §4.2.1.2. The expression of the CF achievable rate is given by the 

following proposition: 

 

Proposition 4.2: 

The partial CF coding strategy defined in §4.2.1.1 achieves a rate given by the 

solution of the following optimization problem: 

 

( ) ( ) ( )

( )

(1) (2) (2)

(1) (2) (2)

0 2
0;1 , 0

0, 0, 0

tr , tr , tr

max 1

RS S

RS S RS S

CF
t

P P P

R tR t R
  ∈ >

≤ ≤ ≤

= + −
η

R R R

R R R

� � �

 (4.23) 

where  

1. 0R  is equal to the capacity of a virtual MIMO channel: 

 

( )

( )

(1) 1/2
0

0

1

,

  and  
diag

S

D

H
R

R −=

   
   +   

R Σ H

H Σ 0
H Σ

H 0 Σ U η U

C � �

� �� �
 (4.24) 

2. η  is subject to the following inequality constraint: 

 ( ) ( )
1

1

log 1 / 1
RN

i i

i

t s t Rη
=

+ ≤ −∑  (4.25) 

3. ( )1 2,R R  is constrained to lie within the capacity region of the MAC from (S,R) 

to D. 

 

Proof: 

From the definition of the coding strategy in §4.2.1.1: 

 ( )(1) (1) (1)

0
ˆ; ,

S D R
R I= x y y  (4.26) 

where 
(1)ˆ
R

y  is given by equation (4.12): 

 (1) (1) (1)ˆ H

R R D
= + +y UAU y UAψ UKy   
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Removing 
(1)

D
UKy  from 

(1)ˆ
R

y  does not affect the mutual information (4.26), and from the 

property (6.68) multiplying the remainder by 
1 H−

UA U does not affect (4.26) either. 

Therefore,  

 ( ) ( )(1) (1) (1) (1) (1) (1)ˆ; , ; ,
S D R S D R

I I=x y y x y y�  (4.27) 

where 
(1)

R
y� is defined as: 

 (1) (1)

R R
+y y Uψ� �  (4.28) 

From (4.26)-(4.28), the rate 0R  can therefore be expressed as: 

 ( )(1) 1/2

0 ,SR
−= R Σ HC � �  (4.29) 

Finally, equation (4.25) is a direct application of Proposition 4.1. This concludes the 

proof. 

 

It can be noticed that in the single-antenna case Proposition 4.2 boils down to the 

CF achievable rates derived in [HZ05]. From the above equations, it can also be observed 

that CFR  meets the MIMO capacity bound when 1t →  and →η 0 . Unfortunately, 

equation (4.25) shows that achieving these two conditions simultaneously would require 

1R → +∞ . The trade-off which maximizes CFR  is investigated in the next section.  

 

4.2.3 Maximizing the Achievable Rate 

The maximization of the CF achievable rate as formulated in Proposition 4.2 is a highly 

non-trivial non-convex optimization problem. Rather than directly addressing the joint 

optimization with respect to all the parameters, we start by identifying sub-problems 

which can be solved by means of convex optimization techniques. First, in §4.2.3.1 a 

closed-form expression for the optimum WZ coding rates is derived assuming all other 

parameters constant, then in §4.2.3.2 and §4.2.3.3 the joint optimization of the WZ 

coding rates and the transmit covariance matrices at the source and relay is addressed.  

 

4.2.3.1 Optimization of the Compression at the relay 

Let assume a fixed transmit covariance at S and R during the first and second slot, 

and a fixed time-sharing parameter t . As a result, 1R  and 2R  are fixed and only 0R  

needs to be maximized with respect to the compression noise η . We show in Appendix 

C.3 that 0R  can be decomposed as follows: 
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( )

0 0, 0,

(1)

0, 0 0, 2
1

,   and  log
R

d r

N

i i
d S r

i i

R R R

s
R R

η

σ η=

= +

 +
 

+ 
∑R HC� �

 (4.30) 

The term ,0 dR  is the mutual information between the signal transmitted by the source and 

the destination observation during the first slot. The term ,0 rR  is the additional 

information brought by the compressed relay observation reconstructed at the destination. 

Note that only ,0 rR  depends on η  and shall be optimized. A contribution to ,0 rR  can be 

associated to each component of the transformed relay observation. Equation (4.30) 

shows that this contribution is maximized and tends to 2log( / )is σ  when the 

compression noise variance iη  is negligible compared to the thermal noise variance 2σ . 

As expected, this contribution vanishes when iη → +∞ , reflecting the fact that a highly 

distorted signal component cannot convey information. Also note that the components for 

which equality holds in (4.11) do not contribute to ,0 rR , although they affect the total 

distortion δ . The optimization of ,0 rR  with respect to η  yields the following 

proposition: 

 

Proposition 4.3: 

The Wyner-Ziv coding rates ir  and compression noise iη  which maximize the achievable 

rate of the partial CF relaying strategy are such that: 

 ( )( )2 2log /
i i

r sµ σ σ
+

 = + −
 

 (4.31) 

 ( )/ 2 1ir

i i
sη = −  (4.32) 

where µ  is a constant such that the following constraint is satisfied: 

 ( )
1

1

1
RN

i

i

t r t R
=

≤ −∑  (4.33) 

 

Proof: See Appendix C.3. 
 

In equation (4.31), the ratio 2 2( ) /is σ σ−  can be interpreted as a useful signal to thermal 

noise ratio per component, since equality occurs in (4.11) when the ith component 

contains only noise. From (4.30), it is clear that an eigenmode with a large 2 2( ) /is σ σ−  

ratio will be a large contributor to ,0 rR  and ultimately to the CF achievable rate CFR , 

provided that the compression noise variance iη  on this eigenmode is low-enough. The 



 

 

88 

term ( )2 2log ( ) /is σ σ−  in (4.31) can thus be viewed as a rate penalty for the 

eigenmodes which have a lower potential contribution to CFR . The penalty tends to −∞  

when 2
is σ→ , and in this case the corresponding CKLT output will not be encoded. It is 

interesting to compare equation (4.31) with the reverse-waterfilling algorithm of 

proposition 4.1 that is obtained when minimizing the total distortion under a rate 

constraint. In reverse waterfilling, the algorithm tries to spread the total distortion δ  

uniformly, under the constraint i id s≤ . Such a strategy leads to log( / )i ir s d=  with d  a 

constant corresponding to the distortion on the eigenmodes which are finally encoded (i.e. 

0ir > ). If the average number of bits available per vector ( )
1 1 /R t t−  is large enough, 

even the eigenmodes such that 2
is σ=  will be encoded, although they cannot convey any 

information, which shows that reverse-waterfilling is sub-optimum in our problem. The 

CF achievable rate loss when adopting the reverse-waterfilling algorithm instead of that 

of proposition 4.3 is illustrated by simulations in [SMV07]. 

Having optimized the compression at the relay, we now address another sub-

problem which is the optimization of source and relay transmit covariance during the 

second slot, before dealing with the whole problem (4.23). 

4.2.3.2 Optimization of the Source and Relay Precoders 

Before introducing a joint optimization procedure, the expression of the rates 1R  

and 2R  shall be clarified. The partial CF strategy described in §4.2.1.1 considers the 

simultaneous transmission of the two independent messages 1ω  and 2ω  simultaneously 

to D during the second slot. Fixed 
(2)
SR  and 

(2)
RR , the MAC achievable rate region is 

defined by the following pentagon (see e.g. ch. 10 in [TV05]): 

 ( )(2)

1 2, /
R

R σ≤ R HC  (4.34) 

 ( )(2)

2 0, /SR σ≤ R HC  (4.35) 

 [ ]
(2)

1 2 0 2(2)
, /S

R

R R σ
  

+ ≤    
  

R 0
H H

0 R
C  (4.36) 

Equality in (4.35) is reached when D decodes 1ω  first, then removes the contribution of 

(2)
Rx  from 

(2)
Dy  so that 2ω  is decoded interference-free. Equality in (4.34) is reached by 

decoding 2ω  first, and the sum-rate side (4.36) is reached by time-sharing between the 

two decoding orders. Solving (4.23) under the constraints (4.34)-(4.36) seems a very 
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difficult non-convex optimization problem. We start by simplifying it by imposing a 

decoding order at the destination: 

 

Proposition 4.4: 

In the single antenna case, the achievable rate of partial Compress-and-Forward is 

maximum when the relayed message is decoded first. 

 

Proof: See Appendix C.4 
 

In other words, CFR  varies along the sum-rate side of the MAC achievable rate 

pentagon and is optimum only at the corner of this pentagon corresponding to the 

decoding of 1ω  prior to 2ω . This is contrary to a statement in a footnote of [HZ05]. Note 

that we were able to prove this proposition only in the single antenna case, but in the rest 

of the thesis we conjecture that the proposition remains valid in the multiple antenna case.  

Having fixed the decoding order at D, we now turn to the optimization of CFR  

w.r.t. 
(2)
SR  and 

(2)
RR  for a given t . From (4.31) and (4.33), it is clear that given 

(1)
SR  (i.e. 

given s ), increasing 1R  allows to increase µ  and therefore to increase each rate ir  or 

equivalently from (4.32) to reduce η  component-wise. This increases the contribution of 

0R  to CFR . In the “full CF” case where only the Relay is allowed to transmit during the 

2
nd

 slot (i.e. 2 0R = , 
(2)
S =R 0 ), then maximizing 1R  w.r.t. 

(2)
RR  is a mandatory 

preliminary step in the maximization of CFR , and this maximization consists in transmit 

power waterfilling on the eigenmodes of 2H  as in [T99]. However in general for partial 

CF, a larger CFR  is achieved by letting 2 0R > . From Proposition 4.4, the decoding of 

2ω  is interference-free. Therefore, 2R  can be maximized w.r.t. 
(2)
SR  by waterfilling on 

the eigenmodes of 0H . Likewise, given 
(2)
SR , 1R  can be maximized w.r.t. 

(2)
RR  by 

waterfilling on the eigenmodes of ( ) 1/2(2)
0 0 2

H
D S

−+Σ H R H H . In the following, we decide 

to optimize 2R  and 1R  successively in the order described above. The intuition behind 

this simplification is the following: CF is known to outperform DF only when the SNR is 

much larger on the R-D link than on the S-D link, therefore we can restrict the 

optimization of CF to this scenario. Thus, we assume that the signal to noise-plus-

interference ratio when decoding 1ω  is high. In this case, waterfilling amounts to equal 

power allocation over all the eigenmodes of 2H , and the impact of 
(2)
SR  on the 

optimization of 1R  becomes negligible.  

 



 

 

90 

4.2.3.3 Iterative Procedure for joint optimization 

Having derived in the previous section an optimization procedure for the Source 

and Relay precoders during the second slot, we now assume that 1R , 2R  and t  are fixed 

and address the maximization of 0R  w.r.t. the Source precoder during the first slot and 

the compression at the relay, before addressing the whole problem (4.23).  

The following two sub-problems can be identified: 

• Fixed U  and η , the optimization of 0R  w.r.t. 
(1)
SR  in (4.29) is obtained by 

transmit power waterfilling on the eigenmodes of 
1/2−Σ H� �  as in [T99].  

• Fixed 
(1)
SR , the CKLT is determined and the compression noise η  which 

maximizes 0R  is given by Proposition 4.3. 

This suggests the use of the non-linear Gauss-Seidel algorithm (see Appendix B.4) 

to jointly optimize 
(1)
SR  and η . Integrating this algorithm with the source and relay 

precoder optimization of §4.2.3.2, we now propose the following procedure for solving 

(4.23):  

 

Iterative Procedure for maximizing CFR : 

1. Maximize 2R  w.r.t. 
(2)
SR  by transmit power waterfilling on the eigenmodes of 

0H  

2. Maximize 1R  w.r.t. 
(2)
RR  by transmit power waterfilling on the eigenmodes of 

( ) 1/2(2)
0 0 2

H
D S

−
+Σ H R H H  

3. Outer loop: Maximize CFR  w.r.t. [ ]0;1t ∈   

Inner-loop: Maximize 0R  w.r.t. 
(1)
SR  and η  by iterating between steps a. and b. 

(Σ�  is initialized to 2
R DN Nσ +I ): 

(a) Maximize CFR  w.r.t. 
(1)
SR  by transmit power waterfilling on the 

eigenmodes of 
1/2−Σ H� � .  

(b) Maximize CFR  w.r.t. η  by optimum Wyner-Ziv coding rates allocation 

(Proposition 4.3).  

 

The outer loop is a one-dimensional maximization of ( )
0 21CFR tR t R= + −  with 

respect to [ ]0;1t ∈ . It can pratically be performed by uniformly quantizing this interval, 

and the quantization step determines the time accuracy of the final solution. 

Unfortunately the convergence of the Gauss-Seidel algorithm in the inner-loop cannot be 

guaranteed. Indeed, the conditions for convergence given in §2.7 of [B99] cannot be 
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verified, because U  depends on 
(1)
SR  and therefore the assumption that Σ�  is fixed in the 

optimization step 3.a is an approximation. Thus the joint optimization procedure cannot 

be claimed optimal. The convergence of the inner-loop will be assessed in the next 

section for realistic SNR values, and the sub-optimality of the whole procedure will be 

evaluated by a comparison with the cut-set bound and the achievable rate of other 

relaying strategies. 

 

4.2.4 Simulation Results 

In this section we analyze by simulations the achievable rate performance of partial CF, 

and perform comparisons with other relaying strategies for the TDD MIMO relay channel 

with full CSI. In the comparison, we will consider non-cooperative DF and partial DF 

strategies for which achievable rates are computed in Chapter 3, but not linear relaying 

for reasons explained in §2.1.4.3.  

4.2.4.1 Downlink Mobile Relaying scenario 

We consider a downlink TDD mobile relaying scenario where a Base Station (S) 

equipped with 4SN =  antennas per sector transmits to a dual antenna Mobile Station (D) 

which is assisted by another dual antenna MS (R) in its neighborhood. The average SNRs 

on the S-D, S-R and R-D links are denoted respectively 0γ , 1γ  and 2γ . In the simulations 

we assume that 0 1γ γ=  varies between 0dB and 20dB and 2γ  is fixed to 30dB (i.e. R and 

D are close to each other). The MIMO fading on each link is modeled by i.i.d. complex 

Gaussian components. On Figure 14, the average CF achievable rate obtained from the 

iterative procedure of §4.2.3.3 is plotted (solid black curves) for both the partial and full 

CF strategies. The dashed curves represent the MIMO channel capacity of the S-D link, 

the achievable rate with the non-cooperative DF and with the partial DF strategies. On the 

figure, the three curves associated to full CF, partial DF and the S-D link capacity (i.e. no 

relaying) almost overlap and it can be observed that only the partial CF strategy yields a 

significant rate increase over the S-D link capacity, whereas non-cooperative DF relaying 

achieves a rate much lower than the S-D link capacity. Further simulation results (not 

plotted here) show that at 2 30dBγ = , partial DF starts to outperform partial CF only 

when 1γ  is at least 10dB higher than 0γ , i.e. when the capacity on the S-R link becomes 

much higher than on the S-D link. On the figure, the dotted curves represent the cut-set 
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bound and the capacity of the Virtual MIMO channel from S to (R,D), obtained by 

waterfilling the source transmit power on the eigenmodes of H� . The cut-set bound is 

much lower than the VMIMO bound, which shows that although 2γ  is high, the capacity 

of the R-D link cannot be assumed infinite. Partial CF achieves a rate very close to the 

cut-set bound and is therefore almost capacity-achieving, although in our simulations we 

stopped the inner-loop after only two iterations. Thus, partial CF seems well-suited to this 

downlink mobile cooperation scenario, and improving the optimization procedure could 

in this case only yield a marginal rate increase. 

 

Figure 14: Average CF achievable rate and comparison with DF strategies and 

capacity upper-bounds  

 

On Figure 15 we compare the achievable rate obtained by applying the complete 

optimization procedure of §4.2.3.3 with a simpler optimization in which we fix  

( )(1) (2) /
SS S S S NP N= =R R I  and ( )(2) /

RR R R NP N=R I  and only optimize t  and η . As 

explained in [TV05], optimizing the source transmit covariance increases the S-D link 

capacity by a 3dB power gain (because 2S DN N= ) plus a waterfilling gain that becomes 

negligible at high SNR. The SNR gain is only about 1dB for the cut-set bound and for 

partial CF. Intuitively, this smaller gain is justified by the fact that the number of transmit 
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antennas is equal to the number of receive antennas on the 4 4×  virtual MIMO channel 

H�  and therefore the rate 0R , which is the main component of CFR , does not benefit 

from any power gain. 

 

Figure 15: Capacity bounds with and without transmit covariance optimization. 

4.2.4.2 Uplink Fixed Relaying scenario 

We now consider a cellular uplink scenario with fixed relaying in which the mobile 

is equipped with 2
S

N =  antennas, and the BS and RS are equipped with 4
R D

N N= =  

antennas. The same i.i.d. Rayleigh MIMO channel model is assumed as in the previous 

section. We assume a high SNR between the RS and BS 2 20dBγ = . The MS is far from 

the BS ( 0 0dBγ = ) and we plot on capacity bounds as a function of the SNR 1γ  on the S-

R link. Note that we do not optimize transmit covarariance matrices as this optimization 

is not expected to provide a significant gain in this antenna configuration. 
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Figure 16: Comparison of CF with other capacity bounds in a cellular uplink 

scenario with fixed relaying ( 0 0dBγ = , 2 20dBγ = , 2
S

N = , 4
R D

N N= = ). 

It can be observed on the figure that partial CF outperforms partial DF at low SNR 

on the S-R link. However, as the MS gets closer to the RS the partial DF strategy shall be 

selected. Implementing a link adaptation between these two strategies allows to always 

operate at less than 1 bit per channel use from the cut-set bound, and hence from the 

capacity. Note that full CF never yields a significant gain compared to direct link or 

partial DF. This shows that compressing the relay observation demands too much 

capacity on the R-D link to create a VAA. 

 

4.2.5 Conclusions 

We have derived in this section achievable rates for CF in the MIMO case with full 

CSI. These rates can be computed by an iterative procedure which optimizes the WZ 

compression at the relay, the transmit covariance matrices at the Source and Relay and 

TDD time-sharing parameter. Simulations show that partial CF outperforms partial DF 

and is almost capacity-achieving in scenarios where the capacity of the R-D link is 

sufficiently high. This condition may occur either in cellular uplink where a fixed relay 
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benefits from a strong link to the BS or in downlink mobile relaying scenarios provided 

the cooperating mobiles are very close to each other. In this second case, the optimization 

of the source transmit covariance matrix makes sense especially if the number of transmit 

antennas at the BS is larger than the total number of antennas at the relay and destination. 

However, in in-band relaying scenarios, the achievable rates of CF remain far away from 

the capacity of a Virtual MIMO channel, because the number of bits to compress the 

observation at the relay is large and conveying these samples to the destination takes a 

siginficant part of the TDD frame. In the next sections of this chapter we will consider 

distributed compression for out-of-band uplink relaying and we will see that CF becomes 

especially attractive if the backhaul rate is large. 

 

4.3 Extension to multiple out-of-band relays or cooperative base 

stations 

4.3.1 Distributed Compression strategy 

4.3.1.1 Coding Strategies 

We consider a source S equipped with SN  antennas transmitting data to 1M +  

base stations 0 1BS , BS , ,BSM…  each equipped with   0, ,iN i M= …  antennas. Without 

loss of generality, we assume that 0BS  is the CPU and that each BS is connected to 0BS  

through a backhaul of fixed rate   1, ,i i Mρ = … . Note that the user-to-BS assignment is 

assumed given and its optimization is out-of-the-scope of this thesis (see e.g. [KM07]). 

The received signal at each BS is 

     0, ,
i i S i

i M= + =y H x n …  (4.37) 

where iH  is the (static) channel matrix from S to each BS and 2
ii Nσn I∼  for 

0, ,i M= … .  

 In Theorem 1 of [SSS08], a distributed coding strategy is considered in which the 

source maps a message 
CF

ω  onto ( )S CFωx  that is decoded at the CPU. Each BS, upon 

receiving 
i

y  maps it onto an auxiliary variable ( )ˆ
i isy  where 

i
s  is the Wyner-Ziv bin 

index and 
CF

ω  is decoded once all the decoded WZ bin indices 
î

s  are available. Though 

Theorem 1 applies to discrete channels, the extension to Gaussian channels and 
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continuous variables holds and is given in section VI of [SSS08]. This scheme achieves 

the following rate: 

 

Proposition 4.5 (Theorem 1 of [SSS08] - Distributed Compress-and-Forward with Joint 

Decoding (DCF-JD)) 

The following rate is achievable by distributed compression: 

 
{ } { }( )

{ }( )
0 1

, 0 1
ˆ, ,

ˆmax ; ,
M M

S i i

M

DCF JD S i
p

R I=
x y y

x y y  (4.38) 

s.t.  { } { }( )1, , \
ˆ ˆ1, , : ;

iM

i

M I ρ
∈

∀ ⊆ <∑y y y
G G G

G

G ……  (4.39) 

and { } { }( ) ( ) { }( ) ( )
0

1
0 1

ˆˆ, ,
M

M

S i S i i

i

MM

i iS p pp p
=

= ∏x y x y yx y y  (4.40) 

 

The coding strategy used to prove Theorem 1 makes use of random coding and binning. 

Decoding is based on strong typicality. The error analysis relies on the generalized 

Markov Lemma [HK80] to show that the decoding error probability goes down to zero 

when the codeword length goes to infinity. This lemma requires that the following 

Markov chain holds: 

 { } { }{ }1, , \ 0, , \
ˆ ˆ, ,

S i iM i M i
→ →x y y y y… …  (4.41) 

to guarantee that the auxiliary variables are jointly strongly typical with the BS 

observations and with the source with a probability close to one as the codeword length 

goes to infinity, which guarantees an error-free decoding. This Markov chain relationship 

is reflected by (4.40). Note that (4.41) is an extension of (6.69) to source coding with 

multiple sources.  

 

Note that prior to [SSS08] other strategies were proposed for distributed WZ 

coding which can be applied to the BS cooperation case as well. In [DW04], parallel 

Wyner-Ziv coding with sequential decoding is performed. A permutation π  of the set 

{ }1, , M…  gives the decoding order at the CPU, the observation ( )1πy  is WZ-encoded 

assuming side information 0y  at the CPU. The observation ( )2πy  is WZ-encoded 

assuming side information ( )( )0 1ˆ, πy y  and so on. With this strategy, the achievable rate is 

given by Proposition 4.6: 
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Proposition 4.6 ([DW04] - Distributed Compress-and-Forward with sequential 

decoding (DCF-SD)) 

 
{ }( )

{ }( )
1

, 0 1
ˆ, ,

ˆmax ; ,
M

S i

M

DCF SD S i
p

R I
π

=
x y

x y y  (4.42) 

s.t.  ( ) ( ) ( ){ }
1

0
1

ˆ ˆ; ,
i

ji i j
I π π π ρ

− 
< 

 
y y y y  (4.43) 

where the distribution is such that the following Markov chain holds: 

 ( ){ } { }
{ } ( ) ( ) ( )

1

0, , \1

ˆ ˆ, ,
i

S jj i iM iπ π ππ

−  → → 
 

x y y y y
…

 (4.44) 

 

In this chapter we will compute achievable rates for the two coding/decoding strategies of 

Propositions 4.5 and 4.6. Note that contrary to [W78][GDV06] and [DW04], [SSS08]  

does not compute a rate-distortion performance but only performs an error analysis where 

the ultimate goal is to decode the source data. Moreover at least two possible 

improvements of the achievable rate are proposed in [SSS08]: 

• Proposition 4.5 assumes that all bin indices are decoded correctly at the 

destination. However, this constraint is actually not really required and an error in 

the decoding of auxiliary variable ˆ
i

y  at the CPU could be tolerated as long as the 

original source message 
CF

ω  is correctly decoded. This leads to Corollary 1 in 

[SSS08]. 

• Partial decoding at each BS can be considered. In this more complex coding 

strategy, the source splits the data into 1M +  messages ( )0 1, , , ,M CFω ω ω ω…  

where 
i

ω  is decoded by the thi BS and 
CF

ω  is only decoded at the CPU. Each 

BS compresses its observation given its decoded message and forwards both the 

decoded message and the compressed observation to the CPU. 

Unfortunately, for time reasons we were not able in this thesis to address these two 

potential improvements. We will therefore restrict ourselves in the following to the 

achievable rates of Proposition 4.5 and 4.6 and attempt to compute them numerically in 

the Gaussian MIMO case. 
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4.3.1.2 Upper and Lower Bounds on the Gaussian MIMO channel 

In this section, we start by defining a codebook which makes the optimization 

problems of Propositions 4.5 and 4.6 numerically tractable. Thereafter, we instanciate 

Propositions 4.5 and 4.6 for this codebook which provides us achievable rate expressions. 

Finally, we present some simple upper-bounds on the achievable rate which will be useful 

as benchmarks in our simulations. 

4.3.1.2.1 Codebook definition 

We constrain 
S

x  and ˆ
i

y  for 1,...,i M=  to be proper [NM93] complex Gaussian 

vectors. Note that as mentioned in [SSS08] this distribution may not be optimal. From 

(4.37) and Lemma 3 in [NM93], the vector 
i

y  is also proper for 0, ,i M= … . Moreover, 

we assume that 
i

y  and ˆ
i

y  are jointly proper such that there exists a constant matrix 
i

M  

and a vector 
i
φ  such that: 

 ˆ     1, ,
i i i i

i M= + =y M y φ …  (4.45) 

and we further assume that M  is non-singular, which means that we do not add useless 

dimensions to the auxiliary random variable ˆ
i

y . Let define the following vectors: 

 ' 'ˆ
i i i

+y y φ�  (4.46) 

 ' 1

i i i

−φ M φ�  (4.47) 

We have: 

 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

' '

( )
' '

'

ˆ ˆ ˆ;

ˆ

ˆ;

i i i i i

i i i i

i i i i

a

i i

i i

I H H

H H

H H

H H

I

−

= + −

= −

= −

=

y y y y y

M y φ φ

M y M φ

y φ

y y

�

 (4.48) 

where ( )a  comes from (6.68). Likewise, it can be checked that:  

 ( ) ( )'

0 0
ˆ ˆ; , ; ,

i i
I I=x y y x y y  (4.49) 

Renaming 
'ˆ
i

y  and 
'

i
φ  as respectively ˆ

i
y  and 

i
φ , it can be concluded from (4.48) and 

(4.49) that when the compression codebook is constrained to be proper complex Gaussian 

distributed and when the auxilliary variables are constrained to be jointly Gaussian with 
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the observations then the achievable rates of Propositions 4.5 and 4.6 can be computed 

with the following codebook: 

 ˆ
i i i

= +y y φ  (4.50) 

where the auxilliary variables are equal to the observations plus an additive compression 

noise. Notice that the Gaussian codebook distribution that we selected satisfies the 

Markov chain relationship (4.44). 

 

4.3.1.2.2 Achievable rate expressions 

With the codebook defined in §4.3.1.2.1, we now compute achievable rates from 

Propositions 4.5 and 4.6: 

Proposition 4.7 

The following rate is achievable by distributed WZ coding with sequential decoding: 

 
( )

( )

( ){ }
0

1/2, 2

1

.

1/

max ,
diag

M
DWZ SD S

i i

R
π

σ

σ
−

  
  =   +  

  

H 0

R
0 I Φ H

C  (4.51) 

s.t. ( )
( ) ( ){ } ( )1

0
1

1

ˆ,

log     1, ,i
S

i j

N i i
i M

π π

π πρ−

−+ ≤ =
y y y

I Φ R …  (4.52) 

 

where  

( ) ( ){ } ( ) ( ) ( )( ) ( ) ( )1

0
1

1
1 1

2 2

0 0
ˆ,

1

i

i j

i
H H H

S Si j j j i

jπ π

π π π π π
σ σ−

−
− −

=

  
= + + + +   

  
∑

y y y

R H I R H H H I Φ H R H I  (4.53) 

 ( ) ( ) ( )( ) ( )diag H

i i i iπ π π π=Φ U η U  (4.54) 

with ( )iπ
U  defined by 

 ( )
( ) 0 (1) ( 1)

( ) ( ) ( )ˆ ˆ, , ,
diag

i i

H

i i i
π π π

π π π
−

=
y y y y

R U s U
…

 (4.55) 

and { }
1

M

iη  is computed for a given permutation π  by applying the optimum WZ coding 

rate allocation of Proposition 4.3. 

 

Proof: 

From Appendix C.2 the compression noise covariance at the ith step of the sequential WZ 

coding is given by ( ) ( ) ( ) ( )
H

i i i iπ π π π=Φ U η U . Therefore, the achievable rate (4.42) can be 
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computed by forming a virtual MIMO channel where the observation at the ith remote BS 

is subject to both thermal noise and compression noise, which gives equation (4.51). The 

expression (4.53) of the conditional covariance matrix is obtained from the definition of 

the conditional covariance (4.5) after a few matrix manipulations (including the 

application of the inversion lemma). 

 

Note that in Proposition 4.7 we do not attempt to optimize the source covariance 
S

R . 

Apart from the fact that such an optimization would further complicate the problem, we 

also expect that it will not significantly increase the achievable rate in the uplink of a 

coordinated network as the total number of receive antennas becomes much larger than 

S
N . One can also notice that the complexity of the optimization problem (4.51) for a 

given permutation π  is quite low because the achievable rate (4.51) is just a sum of 

contributions given by equation (4.30) and obtained by applying M times the algorithm of 

Proposition 4.3. However, the exhaustive search of the best permutation makes the 

overall complexity proportional to !M . This makes the problem prohibitively complex 

when the number of cooperating BSs becomes larger than 4-5. We expect that the same 

complexity issue will occur with the coding strategy of Proposition 4.5, since the number 

of constraints in (4.39) is proportional to the number of subsets G  in { }1, , M… . In an 

attempt to simplify the problem, we replace the individual backhaul link rate constraints 

by a backhaul sum-rate constraint. This leads to the following achievable rate: 

 

Proposition 4.8 

Under a backhaul sum-rate constraint ρ , the following rate is achievable by DCF with 

either Joint or Sequential Decoding: 
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s.t. ( )
{ } 01

1 1

1log diag , , M

i
M

ρ− −+ ≤
y y

I Φ Φ R…  (4.57) 

where 
{ } 01

M

iy y
R  is the conditional covariance of all the remote BS observations given the 

observation of the decoding BS and is given by: 
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Proof: See Appendix C.5 

 

A somewhat surprising corollary of Proposition 4.8 is that with DCF-SD under a 

backhaul sum-rate constraint, the order in which compressed observations are decoded 

does not matter, which removes the need for a search over all possible permutations. 

Unfortunately, the optimum compression noise in problem (4.56) may not satisfy (4.54) 

and therefore the DCF-SD under a backhaul sum-rate constraint may not be 

implementable by transform coding contrary to DCF-SD under a per-link constraint. 

 

In this section we have expressed achievable rates with Gaussian codebooks for the 

DCF-JD and DCF-SD coding strategies under either per-link rate or sum-rate constraint 

for the backhaul. Under a per-link backhaul rate constraint, the achievable rates of the 

DCF-SD strategy are easily obtained for small sets of cooperative BSs by applying the 

same Transform Coding approach as for the 3-node relay channel in a sequential way. 

However, the complexity of the optimization of the achievable rate for DCF-SD and 

DCF-JD becomes prohibitive as the size of the set of cooperating BSs grows. Under a 

backhaul sum-rate constraint, this complexity issue can be alleviated and an achievable 

rate for both strategies can be obtained by solving a constrained optimization problem 

over the set of compression noise covariance matrices. Before attempting to solve this 

optimization problem, we derive some upper-bounds which provide some insight on the 

achievable rate performance of the DCF strategies. 

 

4.3.1.3 Upper-bounds on achievable rate 

A first obvious upper-bound is the capacity of the virtual MIMO channel without 

any compression noise. It can be viewed as the achievable rate limit when the backhaul 

rate grows to infinity: 

Upper-Bound 1 (Virtual MIMO Channel capacity): 
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A second upper-bound is obtained by applying the cut-set bound to the network 

including the backhaul links. Considering the MAC cut between { }{ }1
S, BS

M

i  and 0BS  

readily gives the following upper-bound: 

Upper-Bound 2 (Cut-Set Bound): 

 0;DCF SR ρ
σ

 
≤ + 

 

H
RC  (4.60) 

The access rate of the distributed CF scheme cannot exceed the access rate to the CPU 

plus the backhaul sum-rate. This second upper-bound turns out to be easily achieved in 

the multi-user case when the coordinated network is backhaul-limited, i.e. when the 

backhaul rate is not large enough to let the distributed CF scheme achieve a significant 

fraction of the VMIMO channel capacity (that is obtained with infinite backhaul rate), as 

illustrated in [CS08d]. 

4.3.2 Two cooperative BS case 

When 1M = , the backhaul sum-rate and per-link rate constraints are equivalent and 

Proposition 4.8 simplifies as: 
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s.t. 
1 0

1log ρ−+ ≤
y y

I Φ R  (4.62) 
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This problem is solved in Theorem 2 of [CS08d] to which we refer for the details of the 

solution. In order to turn (4.61) into a concave function, we introduced the change of 

variable 
1−A Φ� . Unfortunately, the constraint (4.62) turns out to be concave in A  and 

therefore the problem is not convex. The proof of Theorem 2 in [CS08d] is made of two 

steps: i) solving the KKT conditions provides a necessary (but not sufficient) condition 

for the compression noise to be optimum ii) checking the general sufficiency condition 
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(see Appendix B.3) for optimality guarantees that the solution given by the KKT is the 

optimum. Finally, the solution is 

 ( )1ˆ diag H−=Φ U α U  (4.64) 

with  

 
2 2

1 1 1 1
i

i
s

α
λ σ σ

+
  

= − −  
  

 (4.65) 

and λ  is such that the backhaul rate constraint (4.62) is satisfied. Equations (4.64)-(4.65) 

correspond exactly to the optimum WZ coding rate allocation of Proposition 4.3. 

Theorem 2 in [CS08d] is therefore a proof that the transform coding approach and the 

Wyner-Ziv coding rate allocation of Proposition 4.3 correspond to the optimum Gaussian 

compression codebook. 

4.3.3 Multiple (more than two) cooperative BS case 

The Problem of proposition 4.8 in the general case 1M >  is addressed in [CS08c].  

As explained in the previous section, this problem is not convex. Moreover, the KKT 

conditions do not seem to lead to a closed-form solution. We therefore decided to solve 

the dual problem (see Appendix B.3), and claim in [CS08c][CS08d] that the duality gap 

is zero. Introducing the same change of variable 
1

i i

−
A Φ�  as in the previous section, the 

Lagrangian can be written as 
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 (4.66) 

The minimization of the Lagrangian can be carried on by the Gauss-Seidel algorithm (see 

Appendix B.4) because it is defined on the domain 
M

+S  which is the Cartesian product of 

the domain of each variable. The Gauss-Seidel algorithm is especially well suited to the 

minimization of (4.66) because the problem 

 ( )1 1 1
0

ˆ arg max , , , , , ,
i

i i i i M− +=
A

A A A A A AL
�

… …  (4.67) 

has a closed-form solution which is obtained from KKT conditions and is given by 

Theorem 2 of [CS08c]: 

 ( )ˆ diag H

i i i=A U α U  (4.68) 
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where 
i

U  is defined from the eigen-decomposition 
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and  
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The maximization of the dual function can be performed by a subgradient method (see 

Appendix B.3) 

4.3.4 Multi-user case: sum-rate and achievable rate region 

In the previous section §4.3.3, we have computed an achievable rate for distributed 

compression of a single user equipped with multiple antennas by several cooperating BSs 

also equipped with multiple antennas. However, in state-of-the-art systems, even a single 

BS is capable to spatially multiplex several users, and from a system spectral efficiency 

standpoint, it would be a waste of resource to dedicate several BSs to a single user. It is 

therefore of more practical interest to investigate the achievable rate of distributed 

compression in the multi-user case. In [CS08b][CS08c][CS08d], we derive an achievable 

rate region for distributed compression by solving a weighted sum-rate optimization 

problem. The procedure is quite similar to that of the previous section, except that the 

minimization of the Lagrangian cannot be solved as easily as in the single-user case. For 

brevity, we do not further discuss this derivation and refer the reader to the above-

mentioned papers for details. Instead, we restrict our multi-user simulations to the sum-

rate side of the achievable rate region, as it already allows interesting observations to be 

made. Notice that the sum-rate can be easily obtained as a special case of the single-user 

achievable rate, defining [ ],1 ,2 ,     0i i i i K i M=H H H H� … …  where K  is the 

number of users and ,i jH  is the channel matrix from the jth user to the ith BS.  

4.3.5 Simulation results 

4.3.5.1 Diamond out-of-band uplink relaying configuration 

We want to study by simulations how the achievable rate of distributed CF for out-

of-band uplink relaying is affected by the backhaul rate in the single-user and multi-user 

cases. We want to look at the influence of several parameters, such as the deployment 
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topology, the number of antennas, the number of users and the type of compression used. 

For this purpose, we consider the “diamond” topology of Figure 17, in which the MS is 

only connected to two parallel RSs but not to the CPU. For simplicity, the same average 

SNR γ  is assumed on the two “access links” MS-RS1 and MS-RS2 links (note that in this 

case the macro-diversity gain is maximum). This scenario is well suited to rural 

deployment, in which RSs are deployed for coverage extension beyond the range of the 

BS. Let also assume that each RS is connected to the BS by a backhaul link of rate / 2ρ . 

Note that if the backhaul link is a radio link, then at high SNR we can assume that ρ  

scales linearly with the bandwidth allocated to this link. Therefore, increasing ρ  amounts 

to increasing the backhaul link bandwidth. 

 

Figure 17: Symmetric Diamond out-of-band relay deployment topology with 2 

parallel relays 

We assume that each MS has the same number of antennas 
S

N  and each RS has the 

same number of antennas 
R

N . At low SNR γ  on the access link the ergodic capacity can 

be approximated as [TV05]: 

 2log
S R R

C N eγ− ≈  (4.71) 
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When the backhaul rate ρ  goes to infinity, the achievable rate of NCDF is limited by 

(4.71) and even if the best relay is selected, the achievable rate of all DF strategies will 

scale as 
R

N . In contrast, the Cut-Set Bound converges to the capacity of a VMIMO 

channel and therefore we expect that the following ergodic rate could be approached by 

distributed compression: 

 22 log
CSB R

C N eγ≈  (4.72) 

This phenomenon is illustrated on Figure 18, where the average achievable rate is plotted 

as a function of the average SNR on the MS-RS link in the same diamond configuration 

as Figure 17. At 0dB SNR, the virtual MIMO channel capacity is 2.8 bit/channel use, 

versus 2 bits for DF with best relay selection. This represents a 40% potential achievable 

rate increase. It would also be possible to increase the rate by broadcasting one message 

to each relay. However, intuitively if the SNR on both links are similar, it means that each 

message is assigned half the power and since the capacity at low SNR is proportional to 

γ  we cannot expect a significant sum-rate increase.   

 

Figure 18: Average achievable rate of the DF protocol and Channel capacity in a 

symmetric diamond Relay channel at low SNR on the MS-RS links and high 

backhaul rate, single user, 2
S

N = , 2
R

N = . 
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Let now consider the DCF-SD strategy of Proposition 4.7. Each relay compresses 

its observation and forwards it to the BS for decompression followed by joint MIMO 

receiver processing. The compression at each RS assumes that a certain amount of side 

information is available at the BS, which depends on the decompression order at the BS. 

In this diamond configuration, there are only two possible orders and we select for each 

channel realization the order which provides the highest achievable rate. On Figure 19, 

we compare DCF-SD with a lower complexity Quantize-and-Forward (QF) strategy in 

which uniform scalar quantization is applied on a per-antenna basis. In this case, the 

achievable rate can estimated by roughly approximating the quantization noise by 

AWGN. When ρ  grows to infinity, both strategies achieve the cooperative MIMO 

capacity. Figure 19 addresses the following question: in a real network what is the 

minimum required backhaul capacity to achieve most (here 90%) of the cooperative 

uplink MIMO capacity?  

 

Figure 19: Required backhaul capacity to achieve 90% of the uplink capacity as a 

function of the SNR on the MS-RS link in a symmetric diamond topology, single 

user, 2
S

N = , 2
R

N = . 

The figure shows that at 10dBγ = , with DCF-SD  approximately 15ρ =  bits of 

backhaul rate are required per channel use in order to achieve 90% of the cooperative 
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MIMO capacity which from Figure 18 equals 8 bit/channel use at that value of SNR. At 

0dBγ = , a total of 12 bits are required for a cooperative MIMO capacity which equals 3 

bits/channel use. From these preliminary results we get the rough indication that the 

backhaul sum-rate shall be equal to as much as four times the access rate in order to 

achieve most of the cooperative MIMO capacity by distributed compression techniques. 

Also note that the distributed WZ compression of the DCF-SD scheme greatly reduces 

the backhaul rate requirements compared to sub-optimum source coding schemes such as 

uniform quantization. Indeed, at high SNR, the number of bits required by uniform 

quantization to maintain the distortion to thermal noise ratio at a certain level grows 

logarithmically with the SNR (i.e. linearly with the SNR in dB). However, DCF-SD  

benefits from the fact that the conditional covariance of the observation at one relay given 

the observation at the other relay decreases as the SNR increases, which is reflected in the 

slope of the required backhaul rate vs SNR curves on Figure 19 which is steeper for 

uniform quantization than for DCF-SD. 

 

On Figure 20, one can see that at 10dBγ =  the ratio between the access capacity 

and the required backhaul rate remains approximately equal to 1/2 with DCF-SD when 

the number of antennas at the RS is doubled, whereas it falls down to 1/3 or 1/5 with 

uniform quantization. This shows that when 
R

N  grows while 
S

N  remains constant, it 

becomes necessary to apply a linear transform such as the KLT or CKLT at the RS (as in 

DCF-SD) instead of low-complexity QF, in order to have a backhaul load that scales as 

the number of degrees of freedom in the signal and not as the number of antennas at the 

RS. 
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Figure 20: Same as Figure 18 and Figure 19 in a 2
S

N =  4
R

N =  antenna 

configuration, two-users. 
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On Figure 21, the same simulation is run in a two-user scenario with 2
S

N =  2
R

N =  

antenna configuration. The achievable sum-rate is plotted as a function of the backhaul 

sum-rate. In this case, at high SNR on the MS-RS link the achievable sum-rate of DF 

protocols scales as ( )min 2 ,S RN N  whereas the capacity of the virtual MIMO channel 

scales as ( )min 2 , 2S RN N . Thus DCF-SD compression can also provide large capacity 

gains at high SNR. However, this situation will only occur for a large density of RSs. It 

can be noticed that also in the multi-user case the ratio between the access sum-rate and 

the required backhaul sum-rate remains approximately equal to 1/2 at 10 dB SNR. 
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Figure 21: Same as Figure 18 and Figure 19 in a 2
S

N =  2
R

N =  antenna 

configuration, two users. 
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4.3.5.2 Coordinated Network configuration 

In the previous section, we illustrated the DCF-SD strategy in a diamond topology 

in order to analyze the backhaul requirements of distributed compression. However, we 

sticked to the coding strategy of Proposition 4.7. Many interesting simulation results 

concerning the other capacity bounds of this chapter are presented in 

[CS08a][CS08b][CS08c] and [CS08d]. For brevity, we refer the interested reader to these 

references.  

4.3.5.3 Conclusions from simulations 

The simulations in this section have shown that when some spare capacity is 

available on the cellular backhaul, it can be used to improve the uplink throughput of 

remote users by creating a Virtual Antenna Array. Simulations show that with distributed 

compression the required backhaul sum-rate must be approximately equal to four times 

the access sum-rate in order to achieve most of the virtual MIMO channel capacity over a 

wide range of SNRs. Distributed compression can thus allow to increase cell-edge 

throughput in lightly-loaded networks. In addition, the backhaul can also be used to 

spatially multiplex several users at high SNR. This might become especially relevant in 

future backhauls based on high capacity optical fiber. 
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Chapter 5: From Capacity bounds to practical 

implementation 

5.1 Introduction and overview of our contribution 

In the previous chapters, we have computed capacity bounds for the MIMO relay 

channel with an emphasis on the DF and CF strategies for which we derived achievable 

rates in the full CSI case. In this chapter, we review various issues which arise when we 

consider a practical implementation of these strategies in a state-of-the-art broadband 

wireless access network such as IEEE802.16 [16j07][16m06]. Our contribution is the 

following: 

• In §5.2 we review the implementation of cooperative DF relaying.  

o First, we show that the capacity bounds that we derived in the previous 

chapters can be extended to model MIMO-OFDM transmission, various 

transmit power constraints and constraints related to the finite set of 

Modulation and Coding Schemes.  

o In §5.2.1.4 we study the effect of imperfect CSI. We propose some 

modifications to the achievable rate optimization problem to handle the case 

of statistical CSI and we verify that quantized precoder codebooks can also 

be applied to cooperative relaying. 

o We conduct a detailed study of two practical implementations of cooperative 

DF Protocol I based on the convolutionally turbo-coded mode of 

IEEE802.16e.  

� The first implementation is a cooperative Incremental Redundancy 

strategy. We derive the parameters of an EESM error predictor for 

cooperative IR and compute its throughput performance under a 

target error rate. We verify that the throughput envelope can be well 

approximated by the degraded achievable rate which is obtained by 

simple modifications of the information-theoretic formulas of 

previous chapters. 

� However, the peak rate of cooperative IR may be limited if the set of 

MCS does not allow very high spectral efficiencies per symbol. In 
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such situations, we show that a superposition coding strategy during 

the first slot of the TDD protocol can overcome the peak rate 

saturation problem. 

• In §5.3, we review some implementation constraints for the CF strategy. We show 

that as for DF, the capacity bounds can be extended to handle practical constraints 

such as MIMO-OFDM transmission. We also briefly describe how practical Wyner-

Ziv coding can be realized and what performance can be expected. 

• In §5.4 we conduct some system-level simulations to check whether the performance 

observed from link-level simulations can match practical deployment scenarios. We 

present a Quasi Monte-Carlo system simulation framework and review the main 

parameters, before running some simulations in single-cell and multi-cell downlink 

scenarios to assess how cooperative DF strategies can increase the cellular 

throughput.  

o In the single-cell scenario we illustrate the effect of shadowing and relay 

density. We show that cooperative partial DF Protocol III is the most 

efficient and allows a large increase of achievable rate in the vicinity of the 

RS and at cell edge. When full CSI  is available, even larger gains are 

achievable by cooperative beamforming (Protocols II and III), as predicted 

by link-level simulations.  

o In the multi-cell scenario, we model additional effects such as inter-sector 

and inter-cell interference. We show that a careful positioning of RSs in the 

deployment is required if RSs cannot handle a connection to multiple BSs. 

We study the potential gains of non-orthogonal resource allocation with a 

spatial reuse of the relay time-frequency slot and show that it allows a large 

increase of spectral efficiency. Moreover, spatial reuse is possible with 

Protocol I but cannot be directly implemented with Protocol III. Therefore, 

Protocol I can be prefered in many cases at the system-level although it is 

outperformed by Protocol III at the link level. 
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5.2 Practical Implementation of Decode-and-Forward strategies 

5.2.1 Constrained Capacity Bounds 

5.2.1.1 MIMO-OFDM transmission 

If the system is wideband and employs Orthogonal Frequency Division 

Multiplexing (OFDM), the equations of Chapter 3 must be modified to account for the 

parallel transmission on multiple sub-carriers. A term ( ),R HC  shall be replaced by a 

sum ( )
1

,CN

i ii=∑ R HC  where 
C

N  is the number of sub-carriers, and 
i

R  and 
i

H  are the 

signal covariance and MIMO channel matrices on the i th sub-carrier. Likewise a 

transmit power constraint shall now read ( )
1
trCN

ii
P

=
≤∑ R . A spectral mask constraint 

can be translated into a per-subcarrier power constraint. For instance, assuming a 

perfectly flat mask gives: ( )tr /i CP N≤R . Per-antenna and per-subcarrier power 

constraints can also be applied simultaneously. Note that all these changes do not affect 

the convexity of the optimization problems and therefore the convex optimization 

procedures presented in Chapter 3 remain applicable. 
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Figure 22: CDF of the achievable rate for DF protocols in a 2
S R

N N= =  

configuration at ( )0 1 25dB, 20dB,  10dBγ γ γ= = = , for a broadband channel 

(SCME typical urban model) and for a single-carrier Rayleigh i.i.d. model. Top: 

1
D

N = , Bottom: 2
D

N =  
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On Figure 22, the impact of frequency diversity on the outage performance of 

cooperative DF strategies is illustrated. The CDF of the achievable rate is plotted for two 

different systems. The first one is a single-carrier system for which the MIMO channel is 

modeled as Rayleigh i.i.d. the second is a broadband OFDM system with 10 MHz 

channel bandwidth for which the SCME typical urban channel model is assumed. The 

average SNR is the same for both systems and the transmit covariance matrices are not 

optimized (i.e. isotropic transmission). In the 2x2x1 antenna configuration (top figure), it 

can be observed that the frequency diversity provides a significant rate increase at low 

outage probability (less than 5%). However, in the 2x2x2 configuration, it looks like there 

is enough space diversity and the benefits of additional frequency diversity cannot be 

observed. Other simulation results could confirm the fact that very often in scenarios of 

practical interest the conclusions drawn from an analysis of cooperative coding strategies 

in the single-carrier MIMO relay channel are directly applicable to the broadband MIMO-

OFDM case. This motivates our interest (and the interest of the research community) in 

the single-carrier case since it is easier to analyze and less complex to simulate. 

 

5.2.1.2 Transmit Power Constraints 

As mentioned in the previous section, a spectral mask constraint can be easily 

modeled while preserving the convexity of the achievable rate optimization problem. 

Likewise, the sum-power constraints ( )tr P≤R  on transmit covariance matrices can be 

replaced by per-antenna power constraints , /
i i

R P N≤  where P  is the total device 

power and N  is the number of antennas. Again, this change in the constraints preserves 

the convexity of the optimization problems. 

 

5.2.1.3 Modulation and coding constraints 

A state-of-the-art broadband wireless system (e.g. [16e05]) typically encodes finite-length 

packets with a turbo-code or an LDPC, and maps the output onto finite alphabet symbols 

(e.g. QAM). In this case, the precoders and rate allocation algorithms derived in Chapter 

3 are not directly applicable, since they are designed assuming Gaussian i.i.d. codewords 

of infinite length. This issue is well-known in OFDM systems and solutions such as bit 

and power loading have been proposed as realistic alternatives to waterfilling [CCB95].  

An interesting property of the degraded capacity formula (2.27) is that it remains convex 
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in γ , the vector of SNRs per subcarrier and spatial stream. The SNR degradation factor 

Γ  and the maximum rate saturation can thus be introduced in the achievable rate 

expressions of Chapter 3 without affecting the convexity of the optimization problem. 

However, note that the rate saturation shall be preferably introduced as an additional 

inequality constraint in order to keep the objective and constraints differentiable. For 

instance, the equation (3.27) in the expression of the PDF achievable rate can be replaced 

by four inequality constraints: 
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 (5.1) 

where maxR  is the maximum spectral efficiency in the set of MCS of the system. For 

instance, if the largest constellation is 64QAM and the highest code rate is 5/6 then 

max 5R =  bits (per QAM symbol). Including rate saturation constraints into the 

optimization starts to make the latter really complex. However, simulations show that the 

effect of rate saturation on the achievable rate starts to become marginal when the set of 

MCS includes very high order constellations combined with high code rates. For instance 

on Figure 23 we plot for each coding strategy the achievable rate under four increasing 

levels of degradation: 

1. max0dB, RΓ = = +∞  (ideal reference curve) 

2. max4dB, 10RΓ = = b (SNR degradation but almost no rate saturation) 

3. max4dB, 6RΓ = = b (SNR degradation and moderate rate saturation) 

4. max4dB, 4RΓ = = b (SNR degradation and severe rate saturation) 

It can observed that the SNR degradation accounts for most of the achievable rate 

decrease whereas the effect of rate saturation becomes marginal when high order 

constellations can be combined with high code rates. Indeed, increasing the maximum 

spectral efficiency per symbol from max 6R =  (e.g. 256QAM rate ¾) to max 10R =  yields 

an achievable rate gain of less than 0.3 bit at high SNR. Therefore initially in our system-
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level simulations we only modeled the SNR degradation and not the rate saturation 

phenomenon. However, in §5.4.4 both phenomena were accounted for. 

 

Figure 23: Impact of achievable rate degradation parameters (SNR degradation 

Γ and maximum rate per QAM symbol maxR ) on the achievable rate of cooperative 

DF protocols in the multiple-antenna case ( 2
S R D

N N N= = = , 

0 210dB, 15dBγ γ= = ) for 4 increasing levels of degradation ( )max0dB, RΓ = = +∞ , 

( )max4dB, 10RΓ = = , ( )max4dB, 6RΓ = = , ( )max4dB, 4RΓ = =  

Finally, note that another more recent approach includes the finite alphabet assumption in 

the information-theoretic optimization [LTV05]. The problem is that it does not model 

the finite codeword length effect and moreover it requires having an apriori knowledge of 

the constellation on each subcarrier and spatial stream, which is a chicken and egg 

problem.  

 

5.2.1.4 Imperfect CSI 

State-of-the-art TDD systems often rely on UL/DL channel reciprocity to obtain 

CSIT without having to explictly feed back the estimated channel coefficients. In this 
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case, CSIT imperfection
4
 comes from the estimation noise and from the variations of the 

channel between the moment it is estimated in one direction and the moment it is applied 

in the other direction. However, in cooperative relaying it is hard if not impossible to 

avoid explicit signaling because for instance the source cannot estimate the relay-

destination channel by means of reciprocity. Moreover, even if the channel is very slowly 

varying (e.g. pedestrian speed), feeding each MIMO channel estimate back to the source 

typically requires a prohibitively large number of bits to achieve a quantization noise 

variance which is of the same order of magnitude as the channel estimation MSE. 

One possible solution to overcome this problem is to feed back the channel 

covariance matrix instead of the channel time or frequency response. The rate at which 

the covariance needs to be fed back is low. Indeed, the channel covariance is assumed to 

remain almost constant over time frame much larger than the channel coherence time. 

Moreover, for a MIMO-OFDM system, a single frequency-domain channel covariance 

matrix needs to be fed back for all subcarriers. In this case, the CSI and therefore the 

capacity and the achievable rate of the various relaying strategies shall be treated as 

random variables. The precoders and resource allocation can be designed to maximize an 

objective which is a function of the CSI distribution (e.g. outage capacity, average 

capacity). This solution is investigated in §5.2.1.4.1 below.  Another solution is to feed 

back the precoder instead of the CSI, where the precoder is selected from a small set (i.e. 

a set of small cardinality) of structured matrices. Thus the precoder can be quantized on a 

small number of bits (e.g. 4 bits) and fed back at intervals much lower than the coherence 

time while keeping the feedback load at an acceptable level. In MIMO-OFDM systems 

the channel correlation in frequency-domain can be exploited to reduce the feedback load. 

Quantized precoders are investigated in §5.2.1.4.2 below.  

5.2.1.4.1 Statistical and Hybrid CSI 

5.2.1.4.1.1 Background and prior art on statistical CSI exploitation 

Statistical CSI is understood in this thesis as the knowledge of the average SNR and of 

the channel covariance matrix. The knowledge of the statistics of a potential interferer is 

not a topic addressed here. The estimation of the average SNR is a well-known topic and 

                                                      

4
 Note that in the presence of interference (not treated here) the channel is not reciprocal because 

interference is different at each node. 
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without spending more time on it we will assume that it can be perfectly estimated. In 

[JVG01], the MIMO channel is modeled as a product: 

 1/2

T
=H WR  (5.2) 

where W  is i.i.d. Rayleigh fading and 
T

R  is the transmit correlation matrix. The rows of 

the channel matrix are assumed uncorrelated but the columns are correlated (i.e. the 

transmit antennas are correlated but the receive antennas are not). A row vector 
i

h  for 

1, ,
R

i N= …  has a covariance matrix /
T R

NR . In a MIMO-OFDM system, this channel 

covariance matrix can be estimated by averaging over all the subcarriers. Then for each 

received packet, a simple AR model can be implemented in time-domain as follows: 

 ( ) ( ) ( ) ( ) ( )
1

1ˆ ˆ ˆ ˆ1 1
CN

H

i i

iC

k k k k
N

α α
=

 
= − − +  

 
∑R R H H  (5.3) 

where k is the index of the OFDM symbol. It is shown in [JVG01] that the ergodic 

capacity of a point-to-point MIMO channel is maximized by precoding with the 

eigenvectors of 
T

R . Moreover, the power loading vector shall be ordered like the 

eigenvalues, i.e. more power shall be allocated to the largest eigenvalues. In [JB04], a 

more complex channel model is considered: 

 1/2 1/2

R T
=H R WR  (5.4) 

and it is assumed that both the transmit and receive correlation matrices 
T

R  and 
R

R  are 

known. In this case, the authors show that the optimum transmit directions are the 

eigenvectors of 
T

R  but the optimum power allocation depends on 
R

R . In both [JVG01] 

and [JB04], the optimum power allocation is obtained by numerical (convex) 

optimization, but no closed-form expression is provided. Both papers also verify that at 

low SNR or when one eigenvalue is much larger than the other ones then the optimum 

scheme degenerates into beamforming. 

5.2.1.4.1.2 Application to the relay channel 

 As far as we know, the MIMO relay channel capacity bounds have not yet been 

extended to the case of covariance feedback. Let consider for instance the DF strategy 

with Protocol I. If the objective is the average achievable rate, the optimization can now 

be formulated as follows: 
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 (5.5) 

The expectation is a convexity-preserving operation [BV04], and therefore the problem 

(5.5) is convex. It cannot (probably) be solved in closed-form but numerical optimization 

can still be performed as in Chapter 3. The partial derivatives can be computed by taking 

the expectation of the closed-form expressions derived in Appendix A: 

 
( ) ( )C C/ , / ,E t t t t

E
 ∂   ∂ 

=  ∂ ∂ 

H

H

Q H Q H

Q Q
 (5.6) 

Given the lack of a closed-form expression for the partial derivatives, the 

computational complexity of the numerical optimization (5.5) will be very high. Various 

approaches of much lower complexity can be considered at the expense of a lower rate. 

One possible approach for reducing the numerical complexity can be as in §3.5.3.1 to 

impose a structure to the source precoder during the first slot, while the relay precoder 

during the second slot can be optimized by applying [BV04] to the point-to-point MIMO 

link between R and D. A precoder structure which makes sense intuitively is  

 ( ) ( )(1)

0 0 0 1 1 1diag diagH H

S = +R U p U U p U  (5.7) 

where the columns of 0U  and 1U  are the eigenvectors of ,0T
R  and ,1T

R . A further 

simplification can then be achieved by limiting the rank of the precoder (5.7) to the 

eigenvalues which are greater than a certain threshold, and by allocating the transmit 

power uniformly over the set of eigenmodes. The problem then amounts to finding the 

optimum fraction of source transmit power that shall be allocated to the eigenmodes of 

the Source-Relay channel. 

5.2.1.4.1.3 The case of Hybrid CSI 

 Hybrid CSI is defined here as in [GHS06], by the fact that a given node may have 

perfect CSI for some channels but only statistical CSI for some other channels. The 

hybrid CSI case is especially relevant to cellular relaying with fixed relays. For instance 

in the downlink, the BS-RS channel 1H  is varying very slowly and can therefore be 

easily tracked, whereas the RS-MS and BS-MS channels 2H  and 0H  may not be 
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trackable if the MS is moving too fast. With hybrid CSI, the full-fledge optimization 

remains highly complex, but the sub-optimum precoder structure can be improved by 

replacing the matrix 1U  in (5.7) by the matrix 1V  of the right singular vectors of 1H . 

5.2.1.4.2 Quantized CSI and Quantized Precoders 

5.2.1.4.2.1 Background on Quantized Precoders 

When it is possible to track the channel but the feedback load would be prohibitive, 

an efficient technique consists in selecting the “best” MIMO precoder from a set of 

reduced cardinal N  (e.g. 16N = ). Only the index of the precoder needs to be fed back, 

which requires only ( )
2log N  bits. In [LHS03], the authors restrict to beamforming in a 

point-to-point MIMO link (here the S-D link), i.e. a single spatial stream is sent even if 

both the source and destination have multiple antennas. Denoting by z  the receiver 

weights (which are normalized such that 
2

1=z ) and by w the transmitter weights, it is 

straightforward that the maximization of the capacity  is equivalent to the maximization 

of the SNR at the output of the receiver, which is proportional to 
2

Hz Hw . The optimal 

receiver weights are such that 
2

H =z Hw Hw  which corresponds to the Maximum 

Ratio Combining solution. The optimal transmit weights (assuming an MRC receiver) are 

given by the solution of the following problem: 

 
2

ˆ argmax  
∈

=
w

w Hw
W

 (5.8) 

If W  is the set of unit vectors of length 
S

N , then the well-known solution is the 

dominant right singular vector of H , which corresponds to Maximum Ratio 

Transmission (MRT). Quantized precoding requires to find the best precoder codebook 

W  of a given size N , defined as the 
S

N N× matrix whose columns are the transmit 

weights vectors  1,...,
i

i N=w . Given a precoder codebook, the transmit weights for a 

given channel realization can be found by exhaustive search: 

 
2

1

ˆ arg max
i

i N≤ ≤

=w Hw  (5.9) 

The authors in [LHS03] design quantized precoders for uncorrelated fading channels, i.e. 

the components of H  are assumed i.i.d. complex Gaussian. They show that for this 

specific channel distribution, the precoder codebook which minimizes the average SNR 

loss with respect to the MRT can be obtained by maximizing the minimum angle between 

all pairs of weight vectors: 
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 ( )
2

1
min 1 H

k l
k l N

δ
≤ < ≤

= −W w w  (5.10) 

This criterion is called the Grassmannian Beamforming Criterion, because it is analog to 

the Grassmannian Line Packing problem. Quantized Equal Gain Transmitters (QEGT) 

and Quantized Maximum Ratio Transmitters (QMRT) can be designed by maximizing 

( )δ W  over the set of complex matrices with respectively unit modulus coefficients and 

unit vector columns. The authors in [LHS03] state that the achievable rate difference 

between QMRT and QEGT is minor. 

 Quantized precoder codebooks have been extended to handle the multiple-stream 

case and the correlated MIMO channel case. For instance, in [LH05] multiple spatial 

streams can be sent and the design criterion can be either the minimization of the error 

probability (assuming an ML decoder) or the maximization of the capacity. Different 

design criteria imply the use of different definitions for the distance ( )δ W . Moreover, 

quantized precoder codebooks are also specified in 3GPP-LTE and IEEE802.16m 

standards for single-user and multi-user MIMO-OFDM systems. In order to reduce the 

feedback load, a single precoder is assigned per time-frequency resource block over 

which the channel is assumed to remain (roughly) constant. 

5.2.1.4.2.2 Application to cooperative relaying 

Because cooperation and limited feedback are two hot research topics for NG-BWA 

systems, the application of quantized precoders to cooperative transmission has recently 

drawn attention. However, as we are writing this thesis there are still very few papers on 

the topic, and they are limited to non-cooperative relaying [YWK07] and the AF strategy 

[ZAL07].  

In this section we investigate the application of Grassmannian beamforming to 

cooperative DF Protocols II and III, in which both S and R have to cooperatively 

beamform to D during the second slot. The source covariance during the first slot is set to 

( )/
SS S NP N I . The joint source-relay transmit precoder is constrained to be a QEGT and 

designed based on the Grassmannian beamforming citerion (5.10). On Figure 24, we 

evaluate the achievable rate performance of quantized precoding compared to the optimal 

transmit covariance given by convex matrix optimization and to the lower complexity 

approach of §3.5.3.2. It can be checked that a 2-bit codebook outperforms the vector 

optimization approach and achieves all the cooperation gain provided by the matrix 
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optimization approach. On Figure 25, a 2x2x1 antenna configuration is considered. In this 

case, the vector optimization approaches the optimal precoder. It is well-known that for 

larger antenna arrays a larger codebook size is required. However, here with 5-bit 

codebook the performance of the vector optimization approach can be approached 

closely, still increasing the codebook size from 16 to 32 yields a very small gain and it 

seems useless to further increase it.  

 

Figure 24: Impact of using a 2-bit precoder codebook in cooperative FDF Protocol 

III, in a 1x1x1 antenna configuration with 0 2 0dBγ γ= =  (Legend: N=No 

optimization, V=Vector Optimization, M=Matrix Optimization, C=Quantized 

Precoder Codebook)  
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Figure 25: Same as Figure 24 in a 2x2x1 antenna configuration with 2, 4, 5 bit 

precoder codebook size 

This very preliminary performance evaluation tends to show that quantized 

precoding can be applied successfully to enable cooperative relaying with limited 

feedback load. However, a more in-depth analysis will be needed to design codebooks 

which are specific to cooperative relaying, by taking into account the distributed channel 

characteristics, device and antenna power constraints as well as achievable rate 

expressions.  

 

5.2.2 An implementation based on cooperative IR 

System simulations performed in §5.4 show that cooperative (F)DF Protocol I (i.e. 

with orthogonal Source and Relay transmissions) is the most interesting at the system-

level when at least two relays are deployed per BS sector. We now investigate how to 

implement such a coding strategy in a real system. Due to time limitations our 

simulations are limited to the single-antenna case, but as commented at the end of this 

section we expect that the conclusions drawn from the single-antenna analysis can be 

extended to the multi-antenna case. 
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5.2.2.1 Description of the IEEE802.16e convolutional turbo-code 

Our coding strategy is based on the Convolutional Turbo Codes (CTC) of 

IEEE802.16e [16e05]. The CTC consists in two duo-binary constituent encoders which 

are Circular Recursive Systematic Convolutional codes. Figure 26 depicts the CTC 

encoder. The data block is split into two sub-blocks of bits A and B that are fed to the 

first constituent encoder shown in Figure 27 to generate parity bits Y1 and W1. Afterwards, 

an interleaved version of A and B is encoded in order to generate additional parity bits 

(Y2 and W2). 

 

The CTC specification in [16e05] allows a set of different coded block sizes to be 

generated. The larger the block size, the better the BLER performance of the turbo-code. 

We picked a N=120B=960 data bits block size for our simulations. The mother code size 

is 3N. 
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Figure 26 CTC encoder 
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Figure 27 CTC constituent encoder 

Note that in our study we do not consider the optional HARQ-IR mode of 802.16e which 

is defined in sections 8.4.9.2.3.4 and 8.4.9.2.3.5 in [16e05]. Instead we consider that the 

Source (BS) always transmits the first  P  coded bits with P>N and N the number of data 

bits, such that the code rate is N/P. The first N bits of the codeword are systematic bits 

and the next P-N bits are parity bits, as represented on Figure 29. 
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Figure 28 Block diagram of subpacket generation for CTC 

We designed a link simulator which implements IEEE802.16e CTC Modulation and 

Coding Schemes. According to the standard, the following code rates can be obtained by 

puncturing the rate 1/3 mother code: ½, ¾, 2/3 and 5/6. An MCS consists in the 

association of a code rate with a constellation QPSK, 16QAM or 64QAM. The MCS with 

the highest spectral efficiency is 64QAM rate 5/6 with 5 bits per QAM symbol.  

5.2.2.2 Cooperative IR strategies 

The mother code is represented on Figure 29. The first N bits are systematic bits. 

Several strategies are considered as illustrated on Figure 29: 

• Direct Transmission (i.e. No Relaying) from Source to Destination. 

• (Cooperative) HARQ-no IR 

o In this case, the Source and Relay respectively transmit the first N/RS and 

N/RR coded bits where RS is the source code rate and RR is the relay code 

rate 

o Note that if RS=RR then the coded bits are just repeated 

o If cooperative DF is assumed, the Destination performs reliability (LLR) 

combining of the two received signals. 

• Cooperative IR v1 

o The Source transmits the first N/RS coded bits. The Relay forwards the 

last N/RR coded bits. Some of the bits may be repeated if N/RS+N/RR>3N 

o Note that in this strategy the Relay does not transmit systematic bits 

• Cooperative IR v2 
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o The Source transmits the first N/RS coded bits. The Relay forwards the 

first N coded bits (the systematic bits) and the last N/RR-N coded bits.  

o Note that in this strategy the Relay repeats the systematic bits 

 

Figure 29: Sequence of coded bits transmitted by the relay for different cooperative 

IR strategies (the bits coresponding to the solid line are always transmitted by the 

relay, the bits corresponding to the dashed line are optionally transmitted depending 

on the relay code rate) 

5.2.2.3 Cooperative IR throughput performance 

The simulations in this section are based on the EESM error prediction model 

detailed in Appendix D. On Figure 30, the average throughput per QAM symbol of the 

different cooperative IR strategies is plotted versus the average SINR 2γ  on the R-D link, 

assuming a 1 30γ = dB SINR on the S-R link and either 0 5γ = dB or 10dB on the S-D 

link. This simulation scenario thus corresponds to downlink with a fixed RS having an 

excellent link with the BS. The MCS on the 1
st
 hop is selected for a target BLER of 1% at 

the relay and the MCS at the relay is based on a 5% target BLER at the final destination, 

after potential combining that is strategy-dependent.  

Figure 30 shows that a large gain of up to 5dB can be achieved by adopting cooperative 

IR v1 strategy. The cooperative IR strategy that avoids as much as possible repeating 
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coded bits clearly outperforms other strategies and yields a large performance 

increase of 5dB, which translates into a 2x throughput gain at low SINR when the 

SINR on the Source-Destination link equals 10dB.  This gain reduces to about 2dB when 

the SINR on the S-D link is 5dB, and vanishes at lower SINRs. In the next section, we 

introduce another coding strategy for cooperative DF Protocol I and we perform a 

comparison of throughput and degraded capacity to analyze the results. 
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Figure 30: Average Throughput vs SINR 2γ  on R-D link of cooperative IR 

strategies, assuming 1 30dBγ =  (S-R link). Top: 0 10dBγ =  (S-D link) Bottom: 

0 5dBγ =  (S-D link) 
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5.2.2.4 Degraded capacity model for cooperative IR 

In the previous section, we have computed the throughput performance of 

cooperative IR by applying the EESM. We now check whether the throughput envelope 

of cooperative IR can be predicted by the degraded capacity model. A straightforward 

extension of equation (2.15) gives: 

 ( )( ), 1 max min , 1DF P SR SD RD
t

t t tρ ρ ρ ρ≈ + −  (5.11) 

where 
SD

ρ , 
SR

ρ  and 
RD

ρ  are given by equation (2.27) 

 ( )( )2 , max

1

1
min log 1 / ,

N

SD SD i

i

R
N

ρ γ
=

≈ + Γ∑  (5.12) 

where ,SD i
γ  is the SINR on the i th subcarrier of the S-D link. We have seen in §2.2.2.3.3 

that for IEEE802.16e CTC the degradation factor and maximum rate can be set to 

4dBΓ ≈  and max 5R = . 

On Figure 31, the throughput performance of cooperative IR v1 is plotted in green in the 

same simulation conditions as on Figure 30, top, and compared to the degraded 

achievable rate of equation (5.11) that is plotted in dotted black. The following can be 

observed: 

• At low SNR on the R-D link, the degraded achievable rate is equal to the 

throughput of the single-hop transmission. Indeed cooperative DF Protocol I 

theoretically degenerates into single-hop transmission when the S-D link has 

higher capacity than either the S-R link or the R-D link. However in our 

simulations the MCS during 1
st
 slot was selected solely based on the predicted S-

R link quality. Therefore, since the S-R link is good, the source transmits using 

the least robust MCS and the destination cannot decode the received signal, 

although it contains some mutual information. This phenomenon does not 

correspond to an actual throughput loss in a real system: an AMC algorithm will 

select the best between single-hop and multi-hop transmission.  

• At high SNR on the R-D link, the peak throughput only reaches 2.5 

bit/symbol compared to an expected 3 bit/symbol predicted by the degraded 

capacity model. Contrary to the previous effect this 20% peak throughput loss 

corresponds to a fundamental limitation of the cooperative IR implementation: 

for a given target error rate, at low SNR, combining the coded bit LLRs received 

during the 1
st
 slot with the LLRs of the signal received during the second slot 
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prior to decoding allows to select an MCS with a higher spectral efficiency 

during the second slot and to increase the throughput. However, if at high SNR 

on the R-D link the MCS with the largest spectral efficiency is already used 

by the relay, then LLR combining cannot further increase the throughput. 

Based on the above observations, we propose the following formula for the degraded 

achievable rate of the cooperative IR Protocol I strategy:  

 ( )( )( )( ), 1 maxmax ,max min ,min 1 ,
IR P SD SR SD RD

t
t t t Rρ ρ ρ ρ ρ≈ + −  (5.13) 

This time, Figure 31 shows that the formula (5.13) matches very well the actual 

throughput envelope. 

 

Figure 31: Comparison of cooperative IR throughput and degraded achievable rate 

assuming 1 30dBγ =  (S-R link) and 0 10dBγ =  (S-D link). 

From expression (5.13) we can easily check that the peak throughput of cooperative IR 

cannot exceed ( ) ( )
2

max / 2 / 2 2.5
max max max

R R Rρ = = = . This also corresponds to the 

peak throughput of non-cooperative DF. In other words, if rate saturation occurs at high 

SNR, the throughput of cooperative IR cannot exceed that of non-cooperative DF. We 

present a solution to overcome this issue in §5.2.3. 
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5.2.2.5 Conclusions on cooperative IR 

The study conducted in this section has shown that cooperative IR allows a practical 

implementation of cooperative DF Protocol I. Therefore a significant throughput increase 

can be obtained in downlink scenarios with fixed relays, compared to non-cooperative 

DF. The best cooperative IR strategy consists in avoiding the retransmission of coded 

bits, which is consistent with the information theoretic statement that the codewords 

transmitted during the first and second slot shall be uncorrelated in order to maximize the 

mutual information. The throughput of cooperative IR for a given set of MCS can be 

accurately predicted by EESM and the throughput envelope can also be predicted by the 

degraded capacity model, provided that the granularity of the set of MCS is small enough. 

An interesting observation is that, at least in the single-antenna case, rate saturation can 

occur at high SNR even if the set of MCS allows a spectral efficiency as high as 5 bits per 

QAM symbol. In this case, cooperative IR cannot achieve a peak throughput increase 

compared to non-cooperative DF. 

5.2.3 An implementation based on superposition coding 

In this section we present a practical implementation of cooperative DF Protocol I 

with the superposition coding at the source during the first slot. This strategy has been 

shown in §2.1.4.1.1 to achieve a lower rate than cooperative DF Protocol I without 

superposition coding, so one may wonder why we want to study its implementation. It 

turns out that the comparison of §2.1.4.1.1 is not always valid when the rate saturation 

(see §5.2.1.3) phenomenon is accounted for. On Figure 23, the impact of rate saturation 

on cooperative DF Protocol I is illustrated. It can be observed that above a certain 

threshold on the average SNR 1γ  on the S-R link, the achievable rate saturates. Therefore 

at high 1γ  an idea that arises is to exploit the link margin on the S-R link by allocating the 

excess power to a signal that is superimposed onto the message transmited to the relay. 

This superimposed signal can convey a message transmitted directly to the destination.  

5.2.3.1 Coding strategy 

We propose the following practical implementation of cooperative DF Protocol I with 

superposition coding: 

1. If the target PER on the BS-RS link can be achieved by the MCS with the 

highest nominal rate, then superposition coding can be considered. The source S 



 

 

136 

will send a signal  ( ) ( ) ( )1 1 2 21
S S S

P Pδ ω δ ω= + −x x x  where 1ω  is the 1
st
 

layer message, 2ω  is the 2
nd

 layer message, and δ  is the fraction of the transmit 

power allocated to the 1
st
 layer. 

2. The 2
nd

 layer message is always mapped onto the MCS with the highest rate. The 

fraction δ  is increased under a target PER constraint for the 2
nd

 layer message 

after successive decoding at the RS.  

3. The 1
st
 layer message is always mapped onto the MCS with the highest rate such 

that the target PER at the destination D is met. 

4.  The 2
nd

 layer message decoded by R is mapped onto an MCS and forwarded to 

D during the 2
nd

 hop slot such that the PER at D is below the target PER. Note 

that in this thesis we consider a simple strategy in which there is no successive 

decoding and combining at D, which would further (slightly) increase the 

throughput at the expense of higher decoding complexity. 

 

5.2.3.2 Simulation Results 

On Figure 32, we assume a 10dB SNR on the S-D link as on Figure 30 and compare the 

throughput performance of cooperative IR v1 and cooperative DF with superposition 

coding. As expected, cooperative DF with superposition coding outperforms cooperative 

IR at high SNR on the R-D link (above 15dB) and yields an additional +20% 

throughput. Of course, the peak throughput increases with the capacity of the S-D link, 

but when the latter increases, the relative improvement of relaying compared to 1 hop 

transmission reduces.  
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Figure 32: Average Throughput performance of cooperative DF with superposition 

coding and with cooperative IR v1 strategy, assuming 1 30dBγ =  (S-R link). Top 

0 10dBγ =  (S-D link) Bottom: 0 5dBγ =  (S-D link). 
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On Figure 33, it can be observed that the degraded achievable rate expression computed 

in equation (5.11) matches very well the average throughput envelope of the maximum 

between single-hop throughput, cooperative IR and cooperative DF with superposition 

coding. This shows that the superposition coding allows to alleviate the rate saturation 

problem at high SNR. 

 

Figure 33: Comparison of average throughput and average degraded achievable 

rate (Same assumptions as Figure 32, top) 

 

5.2.4 Conclusions and perspectives 

The achievable rate gains predicted by information theory for cooperative DF can 

be realized in practical systems by combining techniques such as Incremental 

Redundancy and Superposition Coding. We studied in this section the case of a single-

antenna system based on the IEEE802.16e standard. Its throughput performance was 

analyzed by both the EESM and the degraded achievable rate models and both were 

shown to be applicable when applied cautiously. Throughput simulations showed that 

cooperative IR is subject to a rate saturation problem at high SNR which can be overcome 

by combining it with superposition coding. The extension of these practical coding 
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techniques to the multiple-antenna case should be (relatively) straightforward. For 

instance soft-output sphere detectors can provide the LLRs required for reliability 

combining. However, it would be interesting to study for instance whether or not the rate 

saturation problem which we identified in the single-antenna case remains a serious issue 

in the multiple-antenna case. 

5.3 Practical implementation of Compress-and-Forward strategies 

In the previous section, we have investigated the practical implementation of DF 

and we have validated the fact that the achievable rate performance predicted by 

information theory can be approached in a real system. We now adopt a similar approach 

for CF. However for the sake of brevity we will limit ourselves to  key points that are 

specific to CF. 

5.3.1 Constrained Capacity Bounds 

5.3.1.1 MIMO-OFDM transmission 

The MIMO results presented in Chapter 4 can be easily extended to MIMO-OFDM 

by considering block-diagonal frequency-domain channel matrices. For instance the 

channel matrix on the S-D link can be written as: 

 ( )0 0, 1,...,
diag

C
i i N=

H H�  (5.14) 

where 0,iH  is the 
D S

N N×  channel matrix on the ith subcarrier out of a total of 
C

N  

subcarriers. From parallel channel arguments (see e.g. 10.4 in[CT91]), the signal 

transmitted by S on different subcarriers can be assumed uncorrelated and therefore the 

conditional covariance will also be block-diagonal: 

 ( )(1) (1)

, 1,...,
diag

C
R D i R D i N=

=R R  (5.15) 

The CKLT can therefore also be expressed as a block-diagonal matrix: 

 ( ) ( )(1)

1 2diag   with  diag , , ,
C

H

NR D
= =R U s U U U U U…  (5.16) 

Therefore a per-subcarrier CKLT 
H

i
U  can be defined. It must be applied to the vector of 

length 
R

N  formed by stacking the ith Discrete Fourier Transform output for each antenna 

at the relay. Achievable rates are now obtained by summing independent contributions 

over the 
C

N  subcarriers. The optimum WZ coding rates can still be computed from 

Proposition 4.3, with the summation index i now ranging from 1 to 
C R

N N , reflecting the 
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fact that the total rate 1R  available at the relay to quantize its observation shall be shared 

between all the spatial eigenmodes over all the subcarriers. 

 

5.3.1.2 Practical Wyner-Ziv coding 

The CF achievable rates are derived in Chapter 4 assuming an ideal WZ coding 

applied to each CKLT output. Practical WZ coding implementations are reviewed in 

[XLC04]. The WZ encoder consists in a quantizer followed by a Slepian-Wolf (SW) 

encoder. In order to approach the rate-distortion trade-off, the quantizer shall be rate-

distortion
5
 approaching and the channel code used for SW coding shall be capacity-

approaching. In [LSX05][XLC04], practical WZ coding  of a Gaussian source operating 

at less than 0.5dB from the rate-distortion curve is obtained by combining LDPC-based 

SW Coding with trellis-coded quantization. Therefore, quasi-ideal rate-distortion coding 

is a realistic assumption from an implementation standpoint. If an implementation is 

considered which performs at more than say 1dB from the rate-distortion trade-off, it 

could be interesting to study whether a model similar to degraded capacity can be found. 

Intuitively, one possibility could be to introduce a compression noise degradation factor 

to model the non-ideal WZ coding. 

 

5.3.1.3 Source coding without side information 

The rate-distortion trade-off for gaussian vectors without side information is given 

in section 13.3.3 of [CT91]. The relay shall apply a KLT followed by rate-distortion 

(without side-information) encoding of each output. In this case, the rate allocation of 

Proposition 4.3 cannot be applied, but the total distortion can still be minimized by 

reverse-waterfilling. An even simpler source coding which does not even require CSI 

consists in applying per antenna quantization without any linear transform. In this case, 

an OFDM signal can be quantized directly in time-domain, which is not possible for 

techniques exploiting CSI. Overall these source-coding strategies result in a simpler 

implementation but may lead to a large reduction of the achievable rate as suggested by 

simulations in §4.3.5.1. 

 

                                                      

5
 Here, for the quantizer we are refering to the rate-distortion trade-off without side information. 
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5.4 Deployment aspects 

Up to now in this thesis we have studied the relay channel at the link level. 

However, the key question that equipment manufacturers and operators would like to 

answer can be summarized as follows: what is the benefit of deploying fixed Relay 

Stations as a complement to cellular Base Stations? The benefit shall be ultimately 

expressed in the framework of a business model. In [FIR08] we attempted to bridge 

together technical results obtained from system-level simulations with a network cost 

model in order to address this very complex question. In order to keep the focus of this 

thesis on cooperative MIMO coding strategies we will not enter into such considerations 

in this chapter, but only provide a few simulation results which illustrate connections 

between the link-level simulation results and the system-level performance. We will start 

by describing a simple simulation methodology to study the effect of deployment 

topology on the throughput, before analyzing results in single-cell and multi-cell 

environments. 

5.4.1 Single-cell simulation methodology 

We start by considering a single-cell deployment as represented on Figure 34.  

 

 

Figure 34: Single-cell deployment topology in a downlink with 4x4x2 antenna 

configuration   
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5.4.1.1 Simulation Parameters 

We consider a 3-sector BS equipped with 2 to 4 antennas per sector. The RSs are not 

sectorized, and have 2 to 4 omnidirectional (in azimuth) antennas of 3dB gain. We 

position one or two RSs per sector, at a distance equal to 80% of the cell range. The BS-

RS link is assumed LOS, but the BS-MS and RS-MS are NLOS. An OFDM system is 

assumed with NC data sub-carriers. The size of the FFT is NFFT , so that the bandwidth is 

approximately ( )/C FFTB N N T≈  where 1/ T  is the sampling rate. A cyclic prefix of 

NCP samples is accounted for in the throughput calculations. The total OFDM symbol 

duration is ( )S FFT CPT N N T= +  . The path loss, shadowing and fast fading are given by 

the SCME typical urban model [B05]. Moreover we introduce a shadowing correlation  

between two links originating from different sites (e.g. two different BSs) but ending at 

the same MS. Likewise, in the uplink we assume shadowing correlation between the links 

originating from a given MS. This correlation coefficient is set to 0.5. This reduces the 

benefits of macro-diversity.  
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These parameters are summarized in the following table: 

  

Parameter Value 

 Cell Radius (m) Defined by cell-edge coverage probability 

BS to RS distance dBS-RS =0.8 rcell 

Antenna Gain (dBi) 
GRS =3 ; GMS =1;GBS=

2

3

15 12
dB

θ
θ

 −  
 

 

3 90
dB

θ = °  

Number of Antennas  NBS=2 to 8 per sector; NRS =2 to 4; NMS=1 to 2 

Path Loss Exponent n NLOS =4.05; n LOS=2.6 

Shadowing (std. dev. dB) σS,NLOS=10; σS,LOS=4 

Transmit Power (dBm) PBS =40; PRS=36;PMS=23 

Cyclic Prefix Overhead NCP/ NFFT =1/8 

Data Carrier Ratio NC/ NFFT =3/4 

Channel Bandwidth (MHz) B =10-20 

Noise PSD (dBm/MHz) N0=-113.9 

Noise Figure (dB) FBS= 4; FRS= 4 ; FSS= 7 

Carrier Frequency (MHz) Fc =2500 

Signal to RF Impairments Ratio (dB) 
30

RF

C

I

 
= 

 

 

Table 1: System Simulation Parameters 

Note that:  

• For the sake of brevity we limit our system simulations to the downlink. 

Therefore cooperative DF will be the prefered coding strategy whereas 

cooperative CF will not be considered. Anyway we verified (not shown in this 

thesis manuscript) that cooperative CF does not provide large gains at the sytem-

level in an in-band relaying scenario, and is better suited to out-of-band relaying 

and BS cooperation. 

• In this single-cell scenario we neglect the impact of co-sector interference (i.e. we 

assume each sector operates on a different channel) 

• The cell radius is defined at 75% coverage probability, i.e. such that 75% of the 

users experience an average SNR greater than -6dB at cell edge. This last value 
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takes into account the fact that the BS will broadcast the beacon in a robust 

Modulation and Coding Scheme, using Cyclic Delay Diversity, which should 

allow correct reception at low SNR.  

• We locate the RS at 0.8 times the cell radius. At this distance, the SNR on the 

BS-RS link is limited only by the RF impairments (i.e. to about 30 dB) because 

of the LOS propagation. Preliminary simulation results (not shown in this thesis 

for brevity) suggested that this BS-RS distance is the best if the relays are 

deployed in order to increase the throughput within the range of the BS. 

However, if we wanted to study a scenario in which the RSs are deployed to 

extend the range of the cell beyond the BS coverage, then the best BS-RS 

distance would be larger than (e.g. 1.2 times) the cell radius. With the selected 

BS-RS distance and the adopted path loss model, we have an average 
RS MS

SNR −  

6dB larger than 
BS MS

SNR −  at cell edge on the BS-RS axis.  

• Although we allow up to 2 relays per sector, we do not consider coding strategies 

for the diamond topology but only for the 3-node relay channel. 

5.4.1.2 Quasi Monte-Carlo simulation methodology  

Very (too?) often in the literature on relaying the emphasis is put on the spatial 

diversity provided by the independence of small-scale fading on the BS-MS and RS-MS 

links. However, in a broadband system, shadowing plays a more important role than 

small-scale fading. Indeed, in the SCME channel model the log-normal shadowing 

standard deviation is as high as 10 dB for NLOS links. In our simulations we either 

compute the average achievable rate of the CDF of the achievable rate over a large 

number of realizations of both small-scale and large-scale (a.k.a. shadowing) fading. Such 

simulations can be very computationally intensive if Monte-Carlo (MC) simulation 

methodology is used. Therefore, we investigated the application of Quasi Monte-Carlo 

(QMC) [N92] methodology to our simulations. QMC is a generic tool that to our 

knowledge is not commonly used in communications but is well known in other domains 

such as financial mathematics. For illustration purpose, let apply the principle of QMC to 

the generation of log-normal shadowing in the context of our simulations. In the MC 

methodology, for a given location in the cell, trialN  i.i.d. real Gaussian vectors 

( )2
3,i Sσs 0 IN∼  are generated to model the shadowing on the 3 links. The components 

of is  can then be correlated (to model site-correlation) but different trials are always 
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uncorrelated [ ]H
i jE =s s 0 . The first and second order moments of the performance 

function that we want to monitor (here the achievable rate) are computed:  

 ( ) ( )( )
2

1 1

1 1
    

trial trialN N

i i

i itrial trial

m v m
N N= =

≈ ≈ −∑ ∑s s
F F F

F F  (5.17) 

In contrast, in QMC the ith trial is correlated to the previous trials 1, , 1i −…  in 

order to accelerate the convergence of the estimators (5.17) of the first and second order 

moments. The QMC relies on so-called Low-Discrepancy Sequences (LDS). An LDS is a 

sequence of deterministic vectors which is designed to quickly “explore” the domain of a 

random vector by avoiding the generation of points is  and js , j i≠  which are too close 

to each other (w.r.t. Euclidean distance). The LDS must preserve the randomness 

properties of the sequence, i.e. the estimated cross-correlation of the components of is  

must be close to zero and the estimators (5.17) must become unbiased after a sufficiently 

large number of trials, as if a classical pseudo-random generator was used. In order to 

clarify this very empirical definition of LDS, we illustrate it in the two-dimensional case 

with 10000
trial

N =  on  Figure 35.  It can be observed that the pseudo-random sequence 

contains “clusters” of points which are very close to each other and for which the value of  

the function ( )isF  is approximately constant if the function is continuous. In contrast 

the LDS avoids the occurrence of such clusters of points. From Figure 35, it is obvious 

that LDS can be used to generate random uniformly-distributed user locations in a system 

simulator such that at all the possible locations of the deployment are explored in the 

minimum possible number of trials. Of course, the uniform LDS can be transformed into 

a Gaussian distribution or any other useful distribution of interest and therefore LDSs can 

also be used to generate the shadowing process or even the fast-fading process. In our 

simulations we used Sobol’s [S77] sequences but many other LDSs have been proposed 

in the literature. For the sake of brevity, we will not enter into a detailed discussion on 

LDSs and QMC. However, we insist on the fact that when the number of dimensions of 

the random vector is small - which is the case in 3-node shadowing simulation - the 

QMC methodology leads to a tremendous simulation complexity reduction. In our 

simulations, we observed a complexity reduction by a factor of 10 for the same  

accuracy of the achievable rate estimates. 
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Figure 35: Generation of 10000 points uniformly distributed in [0;1]x[0;1] (left: Low 

Discrepancy Sequence, right: Matlab Pseudo-Random generator) 

 

5.4.2 Simulation results with 1 relay per sector 

On Figure 36, we plot the average rate vs. the MS location in the cell for direct link 

(left) and non-cooperative DF. The peak rate around the BS is large and users can be 

served at large spectral efficiency (up to 12 b/s/Hz thanks to the 2 antennas) but most of 

the cell can only be served at an average spectral efficiency lower than 2 b/s/Hz. The 

weakest coverage is at inter-sector border, because we did not consider sector 

cooperation. The addition of one RS per sector creates “hot-zones” around which large 

spectral efficiency is achievable (up to 7 b/s/Hz) but due to the fact that the RS has lower 

power than the BS and is equipped with omni-directional antennas, the range of these hot-

spots is limited. 

On Figure 37 and Figure 38, we plot the average achievable rate with cooperative DF and 

the cooperation gain, defined as the ratio of the achievable rate using cooperative 

techniques to the achievable rate using non-cooperative techniques. It can be observed 

that the coverage is improved on the BS-RS axis, but the coverage of the inter-sector 

border remains insufficient. Cooperation yields largest gains at cell edge on the inter-

sector border (this is where the macro-diversity yields largest gains), but also around each 

RS. Indeed, when the MS is close to the RS, the duration of the 1
st
 slot is not negligible 

compared to that of the 2
nd

 slot, which is in favour of cooperative DF Protocols I and III, 

compared to Protocol II as shown on Figure 38. Note that even when the MS is far from 
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the BS and the RS, Protocol II cannot outperform Protocol I, mainly because CSIT is not 

available in this simulation. It can also be checked that the deployment of only 1 relay per 

sector is not sufficient to guarantee homogeneous coverage. 

 

 

Figure 36: Average capacity of Direct Link (left) and 2-hop non-cooperative DF 

(right) vs. MS position in a 4
BS RS

N N= = , 2
MS

N =  antenna configuration, with 

CSIR only, B=20MHz. 

 

 

 

Figure 37: Average rate of cooperative partial DF Protocol III (left) and cooperation 

gain vs. MS position in a 4
BS RS

N N= = , 2
MS

N =  antenna configuration, with CSIR 

only, B=20MHz. 
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Figure 38: Average capacity of various strategies vs. MS position on the BS-RS axis 

(top) and inter-sector separation axis (bottom) in a 4
BS RS

N N= = , 2
MS

N = antenna 

configuration, with CSIR only, B=20MHz. 

5.4.3 Simulation results with 2 relays per sector 

The deployment of 2 RS per sector significantly improves the coverage. We 

illustrate this in the downlink in the following. 
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5.4.3.1 Cooperative DF vs. non-Cooperative DF  

With two RS per sector, the average spectral efficiency at cell edge on the sector 

separation axis is improved by a factor of 2.2, when using NCDF, and by a factor of 2.8 

when using PDF Protocol III. It can be observed that the cooperation gain is around 1.2 in 

most of the cell (except around the BS). In terms of average spectral efficiency over the 

cell, assuming a uniform user distribution, direct link yields 4 b/s/Hz, while relaying 

yields 5 b/s/Hz, and cooperative relaying (PDF Protocol III) 6 b/s/Hz, i.e. a 20% increase. 
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Figure 39: Coverage Improvement by Cooperative DF. Top: Average achievable 

rate without cooperation vs. MS position; Center: Average achievable rate with 

Cooperation vs. MS position; Bottom: Cooperation gain vs. MS position, 

4
BS RS

N N= = , 2
MS

N =  antenna configuration, CSIR only, B=20MHz. 
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Figure 40: Average achievable rate of Cooperative DF vs. MS position on BS-RS 

axis (top) and on sector separation axis (botom) in a 4
BS RS

N N= = , 2
MS

N = antenna 

configuration, CSIR only, B=20MHz. 

 

The impact of a large number of antennas at the BS and RS on the downlink single-user 

average capacity with CSIR only is limited, as illustrated on Figure 41 where the average 

capacity is plotted for a configuration with 2 antennas at BS, RS and MS. The only effect 

of having 4 antennas at BS and RS is a higher capacity in the immediate vicinity of the 

RS, due to the larger capacity of the BS-RS link. 
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Figure 41: Average capacity on BS-RS axis (left) and on sector separation axis 

(right) in a 2
BS RS MS

N N N= = =  antenna configuration, no CSIT, B=20MHz, 2 

relays/sector. 

5.4.3.2 Impact of Shadowing  

5.4.3.2.1 What if the relay is in NLOS with the base station? 

An important assumption which is made throughout this thesis is that the BS-RS link 

benefits from a high SNR. This will be true if the RS is in LOS. However, especially in 

urban environment, it may happen that the only available relay sites are in NLOS with the 

BS. From the SCME path loss model and in our simulation scenario if the RS is located at 
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0.8 times the cell radius, then 10
BS RS

SNR dB− ≈  if only the distance-dependent path loss 

is taken into account. This is a priori not enough to significantly increase the capacity in 

the cell. However, if we assume that shadowing is essentially due to fixed components of 

the environment such as buildings, then the shadowing shall remain almost constant 

during the relay lifetime. In this case, statistically it should be feasible to find relay 

locations where the path loss including shadowing ( )L d S+  is for instance equal to 

( )
S

L d σ+ . Since 10
S

dBσ = in NLOS, this would lead to 20
BS RS

SNR dB− ≈ , which is 

enough for efficient relay operation. Moreover, since the NLOS multipath channel is 

more spatially rich a large capacity could be achieved in 4x4 antenna configurations. 

5.4.3.2.2 Impact of shadowing correlation from MS to RS and BS 

On Figure 42, we illustrate the impact of the shadowing correlation on the links 

from a given MS to the various RS and BS, by plotting the average capacity guaranteed 

with 90% coverage probability, as a function of the MS location on the BS-RS axis. 

When the correlation is low (uncorrelated shadowing on top figure), then a MS 

experiencing severe shadowing on the BS-MS link can switch to 2-hop forwarding if its 

link to one of the RS benefits from better shadowing conditions. On the contrary, if the 

shadowing is highly correlated on all links (e.g. correlation of 0.5 on the right figure), 

then its effects cannot be mitigated by relaying. However, notice that cooperative relaying 

still improves the rate w.r.t. non-cooperative relaying. When averaged over the cell, the 

average spectral efficiency at 90% coverage probability is 1.7b/s/Hz  for direct link, vs 

2.5b/s/Hz Mb/s with non-cooperative DF  and 3 b/s/Hz  with cooperative DF. 
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Figure 42: Impact of shadowing correlation on the achievable rate of cooperative DF 

(on the BS-RS axis at 90% coverage probability). Top: No Correlation; Bottom: 

Correlation of 0.5. 4
BS RS

N N= = , 2
MS

N = antenna configuration. 

 

5.4.3.3 Impact of CSIT 

We now optimize the transmit covariance for DF Protocols II and III with CSIT, as 

described in Chapter 3. The gain is high only when 
BS MS RS MS

SNR SNR− −≈ and both are 

low. This happens in areas far from the BS and RS. The largest cooperation gain is thus 

achieved on the inter-sector axis. On  Figure 43, we see that even in the two-relay case, 
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non-cooperative relaying cannot significantly improve coverage if the MS is on the sector 

separation axis. However, if Protocol II -or even better Protocol III- is used, a large 

capacity improvement can be achieved. For instance in the 4x4x2antenna configuration of 

Figure 43, there is a 50% achievable rate increase for Protocol III with full CSI (w.r.t. 

CSIR only) at a 300m distance from the BS and almost a 100% increase at cell edge. 

 

 

Figure 43: Effect of full CSI on cooperative DF Protocols. Average achievable rate  

on the sector separation axis at 90% coverage probability in a 4
BS RS

N N= = , 

2
MS

N =  antenna configuration, with 2 relays per sector. Shadowing Correlation = 

0.5. Top: CSIR only; Bottom: full CSI 
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5.4.3.4 Conclusions from single-cell simulations 

In this section, we tried to understand the effect of deployment topology and 

macroscopic propagation on cooperative relaying. We performed simulations in an urban 

micro-cell scenario, with 3-sectors at the BS and a variable number of relays per sector in 

LOS with the BS and located close to cell edge. When a single RS is deployed per sector, 

with our simulation assumptions the relay cannot significantly improve the coverage at 

cell edge in the sector separation area. Therefore, we consider the deployment of two 

relays per sector to provide a more homogeneous high rate coverage. Our simulations 

show that in this case the single-user spectral efficiency, averaged over the cell area, is 

increased by 25% thanks to non-cooperative relaying. Cooperation yields another 20% 

increase w.r.t. non-cooperative relaying, Protocol III outperforming other protocols. We 

discuss the LOS assumption between BS and RS, and conjecture that a pre-selection of 

relay sites shall allow a good enough link between the BS and RS. We briefly study the 

effect of shadowing correlation from the MS to the BS and RSs, and verify that a high 

shadowing correlation reduces the gain brought by relaying in poor coverage areas, but 

does not seem to affect the cooperative vs. non-cooperative relaying comparison, which is 

more related to microscopic propagation effects.  Finally, we show that the exploitation of 

full CSI at the transmitter side benefits to all strategies (direct link, non-cooperative and 

cooperative DF relaying) and results in large capacity gains. Before drawing conclusions 

at the system-level, we will have to consider multi-cell scenarios in order to account for 

co-channel interference, which may change our conclusions. 

 

5.4.4 Simulations in a multi-cell scenario 

We now make our system-level simulations a bit more realistic compared to the single-

cell simulations of §5.4.1. The basic system asumptions of table 1 are kept, and the 

antenna configuration is 2x2x2. Note that: 

• We consider a multi-sector multi-cell deployment. An MS at cell edge may thus 

associate with a neighbouring BS that offers the best 2-hop throughput (i.e. 

association and routing are performed) 
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• The inter-cell and inter-sector interference are modeled. We consider two possible 

frequency reuse scenarios: 1/3/3 and 1/3/1, where the first figure denotes the number 

of cells in a reuse pattern, the second denotes the number of sectors and the last 

denotes the number of channels. In the 1/3/3 case, each sector operates on a different 

channel, thus there is no inter-sector interference and only inter-cell interference. In 

the 1/3/1 case, the inter-sector interference is the dominant source of interference.  

Note that our system-level simulator still relies on some simplifying assumptions: 

• Scheduling assumptions 

Full-buffer traffic is assumed. Moreover, we restrict the study to DL and assume 

a synchronized TDD/TDMA/OFDMA system, therefore the DL interference is 

modeled by assuming that all other BSs on the same channel are interfering all the 

time. We model the interference from RSs by assuming that all the RSs and BSs of 

neighbouring sectors and cells transmit continuously, which is a worst-case 

assumption. Aggregate cell throughput is computed by averaging the single-user 

throughput assuming a uniform MS distribution, neglecting the MAC overhead and 

assuming that each DL connection is granted the same time-frequency resource (this 

resource includes the 1
st
 and 2

nd
 hop slots). The effect of granularity in the time-

frequency resource allocation (due to the limited number of OFDM symbols and 

frequency subchannels) is neglected. 

• Degraded achivable rate link-to-system interface with rate saturation 

A degraded-capacity model is assumed with a 4dB degradation and a maximum 

rate of 5 data bits per QAM symbol. Furthermore, the minimum average SNR 

requirement is computed assuming a 3dB cyclic combining gain at the BS, an MRC 

gain of  ( )10log RN  dB and a 0dB SNR requirement for the most robust MCS. In the 

following a 2x2x2 antenna configuration is assumed, leading to a minimum SNR 

requirement of -6dB, below which the achievable rate is zero. The peak
6
 spectral 

efficiency in b/s/Hz/cell is computed assuming the 10 MHz WiMax PHY parameters 

for the PHY overhead (1/8 relative Cyclic Prefix duration, 720 useful data subcarriers 

per OFDM symbol, 23/25 oversampling factor). Finally, full CSI is assumed.  

• The frequency-selectivity of the interference is not modeled. 

                                                      

6
 Peak spectral efficiency  means that a single-user with full-buffer traffic is served. 
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• Fractional frequency reuse is not modeled. Therefore, 1/3/1 deployment is severely 

affected by interference. Fractional frequency reuse could alleviate this interference. 

 

5.4.4.1  Simulations with 1/3/3 frequency reuse and no relay-slot reuse 

5.4.4.1.1 Multi-cell 1/3/3 deployment without relays 

On Figure 44, simulation results are plotted for a given multi-cell deployment 

without relays and a single shadowing realization
7
. On Figure 45 the CDF of the spectral 

efficiency over a large number of shadowing realizations is plotted. As expected, half of 

the users are served at a spectral efficiency lower than 2 b/s/Hz/cell. In the multi-cell 

deployment scenario, MSs can associate with the BS offering the best SINR, which may 

not be the closest one due to the large shadowing caused by the NLOS propagation on the 

BS-MS link. Therefore, it can be checked by comparing the SNR CDFs on Figure 45 and 

Figure 46 that the multi-cell deployment achieves a 95% coverage at -6dB average SINR 

whereas an isolated cell would achieve only 80% coverage. 

                                                      

7
 Note that the spatial correlation of the shadowing can be observed on this plot, because it 

represents a single trial of the shadowing. 
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Figure 44: Average SINR (top) and peak spectral efficiency (bottom) versus user 

location in a 1/3/3 multi-cell deployment without relays 
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Figure 45: CDF of the SINR (top) and peak spectral efficiency (bottom) over all user 

locations in a 1/3/3 multi-cell deployment without relays 
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Figure 46: CDF of the SINR (top) and peak spectral efficiency (bottom) over all user 

locations in a 1/3/3 single-cell deployment without relays 

 

5.4.4.1.2 Multi-cell 1/3/3 deployment with relays 

We now assume the same BS deployment with 2 RSs per sector. Moreover, we 

assume that the RSs are in LOS with their main BS, but in NLOS with the co-channel 

neighboring BSs. This is an important assumption, because in this case the DL co-channel 

interference from neighbouring BSs is negligible and there is no need for a RS to 

associate to multiple BSs. Otherwise, it can be checked that the SINR on the BS to RS 

link is low (around 6 dB) and relaying gain vanishes.  

On Figure 47 (top), the SINR to the closest BS or RS is plotted. As expected, 

hotspots are created around RSs. The peak spectral efficiency achieved by cooperative 

relaying with slow link adaptation between Protocols I and III is also plotted on this 

figure (bottom). On Figure 48, the CDF of the average achievable rate is plotted for each 
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strategy (the black curve represents the slow link adaptation between Protocol I and 

Protocol III). It can be observed that relaying increases the throughput especially in 

poor coverage areas: at 90% coverage probability, direct transmission achieves 

0.7b/s/Hz/cell, non-cooperative relaying achieves 1.2 b/s/Hz/cell and cooperative relaying 

achieves 1.5 b/s/Hz/cell. On average, direct transmission achieves 2.5 b/s/Hz/cell, non-

cooperative relaying achieves 2.8 b/s/Hz/cell and cooperative relaying achieves 3.3 

b/s/Hz/cell. Here, thanks to cooperative beamforming (FDF Protocol III with CSIT) 

the throughput at cell edge is more than doubled. Non-cooperative relaying 

increases the average cell throughput by 15% and cooperative relaying increases it 

by 30%. 

 

 

Figure 47: Average SINR (top) and peak spectral efficiency (bottom) versus user 

location in a 1/3/3 multi-cell deployment with 2 relays per sector 
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Figure 48: CDF of the SINR (top) and peak spectral efficiency (bottom) over all user 

locations in a 1/3/3 multi-cell deployment with 2 relays per sector 

 

5.4.4.2 Multi-cell 1/3/3 deployment with relays and re-use of the relay slot 

We now remove the constraint that two RSs transmit on orthogonal resource. In this 

case they interfere with each other, but two users can be scheduled simultaneously. We 

assume that the user density is large enough to always find a pair of users in the same 

area such that they request a relay slot of similar duration. In this case, the time-sharing 

variable can be optimized as described in section 2.2.2 of [FIR07b] for the two relay case. 

The resulting CDF is plotted on Figure 49. Several observations can be made: 

• The interference between the two RSs does not have a big impact on the SINR 

distribution. This is due to the fact that in the considered scenario the relay sub-cell 

footprints do not overlap and also to the fact that NLOS propagation is always 

assumed on the RS-MS link. Clearly, reuse of the relay slot would not be possible for 

two MSs in LOS with the same two RSs. 
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• Reusing the relay slot yields a large average spectral efficiency increase: 2.4 

b/s/Hz/cell for direct transmission, 3.1 b/s/Hz/cell for non-cooperative relaying and 

3.6 b/s/Hz/cell for cooperative relaying. Non-coperative relaying increases the 

average cell throughput by 30% and cooperative relaying increases it by 50%. 

• When relay slot is reused, Protocol I almost always outperforms Protocol III, 

except for users at cell edge and the cooperation gain is achieved mainly for users 

around the RSs. 

 

Figure 49: CDF of the SINR (top) and of the peak spectral efficiency (bottom) versus 

user location in a 1/3/3 single-cell deployment with 2 relays per sector 

 

5.4.4.3 Multi-cell 1/3/1 deployment without fractional frequency reuse 

In a 1/3/1 scenario, due to the high interference (fractional frequency reuse is not 

implemented), the SINR at the RS is only around 10dB, but this is still enough to achieve 

gains by relaying. The average cell throughput is therefore much lower than for the 1/3/3 

scenario (Figure 50 and Figure 51). However, in terms of spectral efficiency the 1/3/1 
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scenario outperforms 1/3/3. The cell spectral efficiency plots still show a large gain for 

relaying (3.6 b/s/Hz/cell to 4.7 b/s/Hz/cell) and cooperation (4.7 b/s/Hz/cell to 5.9 

b/s/Hz/cell). 

 

Figure 50: Average SINR (top) and peak spectral efficiency (bottom) versus user 

location in a 1/3/1 multi-cell deployment with 2 relays per sector 
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Figure 51: CDF of the SINR (top) and of the peak spectal efficiency (bottom) versus 

user location in a 1/3/1 single-cell deployment with 2 relays per sector 

5.4.4.4 Summary and conclusions 

The following conclusions can be drawn from the above multi-cell system-level 

simulations: 

• If the relays do not have the capability to associate to multiple BSs, then they should 

be carefully deployed, avoiding that a RS be in LOS from two co-channel BSs. 

• In both 1/3/1 and 1/3/3 scenarios a significant spectral efficiency gain is achieved by 

relaying and cooperation. 

• Protocol III with CSIT allows a large increase of the spectral efficiency for cell-edge 

users (2x increase at 90% coverage) 

• Reusing the relay slot is a strategy that leads to a large increase of the spectral 

efficiency, resulting in a +50% cell capacity gain (30% due to relaying and 20% 

due to cooperation). In this case Protocol I outperforms Protocol III for users around 
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the relay. Therefore relaying protocol I is an attractive solution at the system 

level. 

5.5 Conclusions 

A large number of issues arise when considering the practical implementation of 

cooperative coding strategies in future broadband wireless systems. In this chapter, we 

have reviewed some of them. Sometimes we only scrapped the surface and a more in-

depth work would definitely be needed. However, the general observation that we can 

make is that the information-theoretic study is not disconnected from the real 

implementation but on the contrary can provide very useful tools to analyze and predict 

the performance of cooperative coding strategies in a real implementation.  
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General conclusions and possible future work 

We now draw some general conclusions on the results obtained within this thesis 

and propose some research directions to complete or extend our work. We do not attempt 

to summarize again our achievements chapter by chapter, as this was already done in 

§1.2, but rather highlight some key take-away messages. 

 

• Although the capacity of the three-node Gaussian relay channel remains unknown, 

simulations show that a combination of partial DF and CF yields an achievable rate 

envelope which is only a few tenths of dBs below the cut-set upper-bound on 

capacity. Thus we do not see a big incentive in performing research on even more 

advanced coding strategies that might approach even closer to the cut-set bound. This 

observation is in agreement with the curent research trend in the IT community to 

focus on more complex topologies and traffic, especially on relaying with multiple 

hops or multiple parallel relays, the multiple access and broadcast relay channels and 

multi-way relaying. Another research path which we believe deserves interest is 

interference-aware relaying (see e.g. [ZKL08]). Indeed, on the one hand our network 

simulations in Chapter 5 show that the relaying strategy shall not be designed or 

selected in isolation of the rest of the network but on the other hand trying to design a 

coding strategy for a large topology often leads to prohibitive complexity, thus 

interference-aware relaying can be viewed as a trade-off between these two 

requirements.  

 

• We decided to focus on three-node MIMO TDD relaying with full CSI because it 

provides useful capacity bounds for the throughput prediction of future BWA 

networks. We show in Chapter 3 and Chapter 4 that the cut-set bound and the 

achievable rates of the partial DF and CF strategies can be computed efficiently by 

convex optimization. An outcome of the optimization process is the optimum 

resource allocation (here the optimum time resource allocation) and the optimum 

transmit precoders at the source and relay.  
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o Our link-level simulations in Chapter 3 show that in a typical cellular 

downlink scenario partial DF can yield about 50% achievable rate increase 

compared to conventional point-to-point single-hop and multi-hop 

transmission. This gain reduces to about 20% if the sum-power of the source 

and relay is normalized.  

o Our link-level simulations in Chapter 4 show that in a typical cellular uplink 

scenario partial CF can outperform partial DF by up to 40% at low SNR on 

the source-relay and source-destination links. However, partial CF requires a 

very high rate on the relay-destination link to become efficient. Therefore we 

believe that it is better suited to out-of-band relaying and to BS cooperation. 

 

• The rate gains we observed in our link-level simulations suggest that cooperative 

relaying is an attractive solution to increase the spectral efficiency of future BWA 

networks. We hope that our work will support the design of practical precoders and 

coding strategies for cooperative MIMO relaying, like the knowledge of capacity 

bounds for point-to-point MIMO supported the design of currently standardized 

single-user MIMO coding schemes. However, we believe that more work is needed 

towards practical implementation: 

o  A valuable research topic in this direction is the quantization and signaling 

of CSI for cooperative MIMO-OFDMA links, which can be combined with 

the exploitation of statistical CSI. Another direction is the extension of 

precoding with CSI to the multi-user MIMO relaying case, because the 

emerging standards IEEE802.16m and 3GPP LTE+ are likely to support 

multi-user MIMO. 

o We verify in Chapter 5 that by introducing some “degradation” parameters 

into our capacity bounds we are able to predict the throughput of a real 

system with a good accuracy (i.e. within about a dB). This topic would 

require more work on some specific aspects, for instance on the effect of rate 

saturation on cooperative MIMO relaying.  

 

• Our network simulations in Chapter 5 essentially show that macroscopic propagation 

and interference play a key role in extending link-level results to the system-level: 
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o  A first outcome is that fixed RSs shall either avoid or remove co-channel 

interference in order to achieve the high SNR on the BS-RS link required for 

DF and CF to be efficient in the downlink and uplink respectively.  

o Simulations in a downlink noise-limited deployment with two relays per 

sector show that relaying increases the cell average spectral efficiency by 

about 25% and cooperation (partial DF) adds another 20% gain on top of this. 

Moreover, with full CSI and optimum precoders at the source and relay the 

achievable rate is almost doubled at cell edge with partial DF. These results 

represent an a posteriori motivation for our research on MIMO precoding for 

the relay channel. Note that the figures aim at providing an order of 

magnitude for the potential gains to be expected from cooperation, but of 

course they are directly dependent on our choice of simulation parameters, 

which we tried to chose as realistic as possible. 

o Another observation is that spatial reuse has a strong impact on the 

performance of cooperative protocols. Indeed, simulations in Chapter 3 and 

Chapter 4 show that partial DF and CF strategies achieve the highest rate at 

the link-level. However, both are based on the TDD protocol III defined in 

§2.1.3.1 which involves simultaneous transmission by the Source and Relay 

during the second slot. This protocol does not allow multiple relay 

transmission, contrary to protocol I, and therefore the rate gain vanishes as 

soon as two relays (or more) are deployed per sector. Thus at the system-

level protocol I can be prefered to protocol III. 

 

• In Chapter 4, we derive some achievable rates for distributed compression applied to 

a coordinated uplink with multiple antenna network devices. We show how spare 

cellular backhaul capacity can be exploited to increase the wireless access capacity 

and again we provide by simulations some orders of magnitude on the required ratio 

of backhaul to access capacity in order to optimally exploit the potential of 

distributed compression. We believe that there is a high potential in distributed 

compression for next generation wireless networks but again a significant amount of 

work needs to be carried on before it becomes applicable to a real system. Among the 

many issues not addressed in this thesis are the selection of set of MSs and a set of 
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receiving BSs for each given time-frequency resource element, the problem of CSI 

signaling in a MIMO-OFDMA system, the backhaul latency issues, …etc. 

 

Overall, relaying and cooperation deserve well the interest that they have been raising 

over the last few years. However, by breaking the point-to-point paradigm they also 

create many challenges, the surface of which we sometimes only scratched in this thesis. 

Finally, we believe that in future works the topic of cooperation shall be addressed jointly 

with the problem of interference, which is a complex-enough problem to give headaches 

to PhD students for years ahead. 
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Appendix A Differentiation with respect to complex 

structured matrices 

In this thesis, we need to differentiate real-valued functions of complex positive 

semi-definite matrices. Although the derivation with respect to complex matrices is well-

known (e.g. [PP08]), the fact that the matrices with which we are dealing have a special 

structure requires the differentiation to be handled carefully. We start by reviewing 

classical results on complex differentiation when the matrix does not have a special 

structure. We then review a recently published methodology for differentiation with 

respect to structured matrices. Finally, we propose an alternative way to handle the case 

of structured matrices and discuss its advantages and drawbacks. 

A.1 Differentiation with respect to unstructured matrices 

The functions we are dealing with in this thesis are non-analytical and therefore we 

will resort to the generalized complex derivative and conjugate complex derivative, 

defined respectively as  
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And the differential reads: 
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If the function is real-valued, then  
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and the differential (6.2) simplifies as: 
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where the gradient is defined as: 
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In this thesis, we will need the following partial derivatives: 
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In [HG07], a notation is introduced which simplifies the expression of the differential and 

of the chain rule, especially for matrix valued functions of matrices. We use the notation 

of [HG07] throughout this thesis, which is defined from the differential expression: 

 ( ) ( ) ( ) ( )*

*d dvec dvecf f f= +
X X

X XD D  (6.9) 

With the notations of [HG07], the generalized complex derivative f
X
D  and conjugate 

complex derivative * f
X
D  of a real-valued function are now row-vectors: 
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The gradient is  

 ( )*2
T

f f∇
X
D�  (6.11) 

Let define ( ) ( ) ( )( )* * * *, , , ,h g=X X U X X U X X . The chain rule then reads: 

 ( )( ) ( )( )*

*h g g= +X U X XU
U UD D D D D  (6.12) 

 ( )( ) ( )( )* * * *

* h g g= +UX X U X
U UD D D D D  (6.13) 

 

A.2 Differentiation with respect to structured complex 
matrices 

In the previous section, it was assumed that all matrix components could vary 

independently. However, in this thesis we are dealing only with PSD matrices, which are 

by definition Hermitian-symmetric. In [PP08], the case of real structured matrices is 

addressed. The structured matrix is expressed as a function of an unstructured one, and 

the chain rule is used to find the derivative with respect to the unstructured matrix. In 

[HP08], the case of complex structured matrices is addressed. The authors call them 
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“patterned matrices”. Let consider for example Hermitian-symmetric matrices. Using 

similar notations as example 5 of [HP08], an N N×  Hermitian-symmetric matrix X  can 

be generated by the following so-called “pattern producing” function: 
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where 
d

L  is an 
2

N N× matrix that maps the N  independent components of the real 

vector r  onto the diagonal of X , 
l

L  (resp. 
u

L ) is an ( )( )2 1 / 2N N N× −  matrix that 

maps the ( )1 / 2N N −  independent components of c  (resp. 
*

c ) onto the lower-

triangular (resp. upper-triangular) part of X . The derivatives of F  read: 
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The generalized complex derivatives with respect to r , c  and 
*

c  of a function of a 

Hermitian-symmetric matrix can now be computed using equations (15), (16) and (17) of 

[HP08]:  
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where X�  is the extension of X  to the set of unpatterned matrices. One important aspect 

that is mentioned in [HP08] and not in [PP08] is the problem of dimension. In the chain 

rule, each function must be differentiable, which requires that each variable can be 

changed independently of the other. In the case of Hermitian-symmetric matrices, the 

variables in vectors r  and c  shall be independent and the number of independent real 

variables (one per real variables and two per complex variable) shall be equal to the real 

dimension of the set of patterned matrices, e.g. ( )1N N N+ − . This condition is verified 

with the pattern-producing function (6.14), but many other parameterizations are possible 

which do not verify this condition on dimension.  

Applying the above methodology to the function ( ),X X HC�  gives 
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and 
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Inserting (6.19),(6.20) and (6.15) into (6.16) yields: 
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Likewise,  
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Finally, the gradient of C is given by Theorem 2 of [HP08]: 
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Note that because of the mapping F  defined by (6.14) is linear, it preserves convexity. 

However, in this thesis, the matrices with which we are dealing are not only Hermitian 

but also PSD. In [HP08] the Cholesky decomposition 
H=Q LL  is proposed to 

parameterize PSD matrices. Unfortunately in this case the mapping is non-linear and a 

function which is convex in Q  may be non-convex in L . This is the reason why in the 

algorithms proposed in this thesis the Hermitian symmetry is guaranteed by the pattern-

producing function, but the positive semi-definiteness is enforced by either gradient 

projection or a barrier function. 

 

A.3 An alternative way to differentiate with respect to 
structured matrices 

In the previous section, the approach of [HP08] to patterned complex matrix 

derivatives was presented. This approach presents the interest of expressing the gradient 

as a function of the minimum set of independent variables. Therefore, the numerical 

complexity of gradient descent algorithms is minimized. In this section, we propose an 

alternative way to compute the gradient for structured matrices, which is instanciated here 

for Hermitian matrices. 

Let now assume that the matrix X  is an N N×  unstructured complex matrix with 

22N  real dimensions. Let define  
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This function generates a Hermitian matrix which is equal to X  only if the latter is 

Hermitian. Let now define  

 ( )( )*: , ,g X U X X HC�  (6.25) 

Applying the chain rule as defined in [HG07]: 
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From (6.24) we have:  
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Introducing (6.28) into (6.27) and (6.26) and switching back to convential notation gives: 
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Note that g  is not convex on the set of unstructured matrices. However, nothing prevents 

us from starting a gradient descent from an initial point 0

N

+∈X S . In this case, the 

gradient equals: 
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As long as it is checked that the sequence of points in the descent lies in 
N

+S , the gradient 

expression (6.31) remains valid. Ultimately, the minimization leads to the same optimum 

point as the patterned derivative approach of [HP08]. 

The main interest in the approach that we introduce here is that the gradient is 

directly obtained from the unconstrained case as ( )
*

/f∂ ∂X . 
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Appendix B Numerical Optimization Algorithms 

In this appendix, we review the numerical optimization algorithms which are used in 

this thesis. The two references on which we rely are [BV04]  and [B99]. The former 

provides an in-depth analysis of convex sets, convex optimization theory and algorithms 

for convex optimization. The latter also addresses numerical algorithms for non-convex 

problems. We illustrate these algorithms in the context of the following constrained 

optimization problem: 
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J

o
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×≤

v
v

f v 0

V  (6.32) 

where o  is a real-valued objective function, v  the variable (a vector or a matrix), V  is 

the domain of the problem and the inequality constraints are denoted as ( ) 0jf ≤v , 

1,...,j J=  and stacked into a vector-valued function f  as follows: 

 ( ) ( ) ( )( )1 ,...,
T

Jf ff v v v�  (6.33) 

The subset of V  on which the constraints are satisfied is called the feasible set. The 

subset V�  of V  over which all the constraints are inactive, i.e. ( ) 0jf <v { }1,...,j J∀ ∈  

is called the interior set of V . If the domain, the objective and the inequality constraints 

are convex, then the problem is convex in standard form and any local optimum is a 

global optimum. For differentiable convex problems, the unique optimum point can 

sometimes be found by solving the necessary first order conditions for optimality (better 

known as Karush-Kuhn-Tucker (KKT) conditions). However, most often KKT conditions 

do not bring a closed-form solution and one has to resort to numerical optimization. 

B.1 Gradient projection 

The Gradient Projection Method (GPM) is described in section 2.3 of [B99] and 

used in §3.4.1 of this thesis. Let us assume in this section that the inequality constraints 

have been included in the definition of the domain, i.e. the domain is the feasible set. In 

order to introduce the GPM, let first consider a steepest descent. At the thk  step the 

candidate next points are ( )

( 1) ( ) ( )
k

k k k
s o

+ = − ∇
v

v v  it may happen that for some step sizes 

the candidate next point does not belong to V . For instance adding a Hermitian matrix to 

a PSD matrix does not guarantee that the resulting matrix is PSD. The Gradient 

Projection Method (GPM) guarantees that the direction and step size lead to a feasible 

point. The GPM is an iterative algorithm which computes at step k  the following points: 
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where 
( )k

s  is a positive scalar, ( ]( ) 0;1kα ∈  is the step size and 
V
P  denotes the projection 

on V . The GPM presents a practical interest when the projection operator turns out to be 

simple. For instance in [YB03], the GPM is used because the feasible set is the set of PSD 

matrices of unit Frobenius norm and the projection on such a set can be performed at a 

relatively low computational cost. In our thesis, the GPM is used to minimize a 

Lagrangian with respect to PSD matrices. Therefore a projection from the set of 

Hermitian matrices onto the PSD cone is needed. Let consider the eigenvalue 

decomposition of an N N×  Hermitian matrix: ( )diag H=M U λ U . The projection of 

M  onto 
N

+S  is [YB03]:  

 ( ) ( )diagM

H

+

+=M U λ U
S
P  (6.36) 

There exist lots of variants of the GPM and we refer the reader to [B99] for a 

detailed review. One important parameter which is left to the implementer is the choice of 

the step size selection strategy. The one we picked in this thesis is the Armijo rule along 

the feasible direction. Fixed a constant 
( )k

s s= , the Armijo rule gives a procedure to 

select 
( )kα  at each iteration. Fixed two scalars ( )0,1σ ∈  and ( )0,1β ∈ , then 

( ) k
k mα β=  where 

k
m  is the first non-negative integer such that  

 
( )( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )

,
k k k k k k km m

o o oβ σβ− + − ≥ − ∇ −v v v v v v v  (6.37) 

The choice of parameters β  and σ  is empirical, but the convergence to a stationary 

point (the optimum if the problem is convex) is proven for various step size selection 

strategies in [B99], including the Armijo rule.  

 

B.2 The barrier method: an interior point algorithm 

The barrier method is described in section 11.3.1. of [BV04] and is used in section 

3.4.2.  of this thesis. Given two fixed real parameters 0α >  and 1β > , the barrier 

method is an iterative procedure which solves at the i th iteration the following 

unconstrained minimization problem: 

 ( )
( )

( )
1

1
min

J

j

j
v

o
m i

φ
=

∈

  
+ 

  
∑v v

V�
 (6.38) 
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 ( ) ( )( )log
j j

fφ − −v v�  (6.39) 

where ( )1m α=  and ( ) ( )1m i m iβ= − . The function 
j

φ  is the logarithmic barrier 

associated to the j th inequality constraint. This function tends to +∞  when 

( ) 0jf →v . It is important to define barrier functions for all the constraints defining the 

feasible set (and not only the inequality constraints). For instance, as pointed out in 

Theorem 5.1 of [T01], log− X  is a barrier function for the positive definiteness 

constraint 0X � . Once all the barriers are defined, the optimization can be carried on 

without the need for any projection as long as the descent starts from an initial point 0v  

in V� , i.e. an interior point. In this thesis we used a steepest descent with backtracking 

line search [BV04] to provide the step size. For sufficiently small step size, the candidate 

next point is guaranteed to lie within the interior set and the convergence to the optimum 

is proven in [BV04]. 

 

B.3 Solving the dual problem 

The dual problem associated to (6.32) is: 

 ( ) ( ) ( ) ( )
( )

0

,

max   where  inf T
g g o

∈≥

 
 + 
 
 

vµ

v µ

µ µ v µ f v
V

L


�
	

�

�

 (6.40) 

where ( ),v µL  denotes the Lagrangian and ( )g µ  is the dual function. The dual problem 

is always convex, even when the primal is not. The difference between the solution of the 

primal problem and the solution of the dual is called the duality gap. This quantity is 

always non-negative. The dual problem may be easier to solve than the primal, especially 

when the latter is non-convex, but in this case the duality gap must be quantified. Often 

when the primal is convex the duality gap is zero and it is said that strong duality holds. 

Proving strong duality can be established by simply proving that the interior set is non-

empty. This last condition is called Slater’s condition (see section 5.2.3 in [BV04]). An 

example application is provided in section 3.4.1 of this thesis. If the primal problem is 

non-convex, then proving that the duality gap is zero is more difficult, but not impossible. 

One possibility is to show that the following general sufficiency condition is satisfied: 

 General Sufficiency condition (Proposition 3.3.4 in [B99]): 

Let v̂  and µ̂  two vectors such that v̂  is a minimizer of the Lagrangian function ( )ˆ,v µL  

and 0≥µ  with 0
j

µ =  for all j  belonging to the set of non-active constraints at v̂ . 

Then v̂  is a global minimum of the problem. 
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An example application of the general sufficiency condition is given in 

[CS08a][CS08c][CS08d]. 

 From (6.40), it can be observed that the dual problem can be decomposed into 

two optimization problems: 

• Minimization of the Lagrangian. The computation of the dual function at a 

given point 0µ  requires to minimize the Lagrangian ( )0,v µL  with respect to 

∈v V .  

• Maximization of the dual function. The dual function ( )g µ  needs to be 

maximized on 
J

+� .  

If the Lagrangian is differentiable, the first optimization problem can be solved by e.g. a 

classical gradient descent method or by the GPM depending on the set V . The second 

optimization may be less straightforward. Indeed, from definition (6.40) it is in general 

difficult to derive a closed-form expression of the gradient g∇  (provided it exists). 

However, as shown below, a closed-form expression of a subgradient can be found (see 

also sec. 6.3 of [B99]). Since the dual function is concave in µ , a vector h  is a 

subgradient of g  at 0µ  if for all 1µ : 

 ( ) ( ) ( )1 0 1 0

T
g g≤ + −µ µ h µ µ  (6.41) 

Let 0v̂  and 1v̂  be minimizers of the Lagrangian at respectively 0µ  and 1µ . Then 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 0 1

1 0 0 1 0 0 0 1 0

ˆ ˆ     , ,

ˆ ˆ ˆ, ,
T

g

g g

≤

⇒ − ≤ − = −

µ v µ v µ

µ µ v µ v µ f v µ µ

L L

L L

�
 (6.42) 

From (6.41) and (6.42) it can be concluded that ( )0
ˆf v  is a subgradient of g  at 0µ , and 

the dual can be solved by subgradient methods. The subgradient method generates a 

sequence of dual-feasible points according to the following iteration:  

 
( ) ( ) ( )( )1k k k

s
+

= +µ µ h
M
P  (6.43) 

where h  is the subgradient, 
( )k

s  is a positive scalar step size and 
M
P  is the projection on 

the set M  of dual-feasible points. Proposition 6.3.1 in [B99] states that for sufficiently 

small step size, the distance to the optimum µ̂  is reduced at each iteration. Unfortunately, 

the practical step size selection strategies are quite empirical, as explained in .sec. 6.3 of 

[B99]. For instance, in this thesis we computed the step size as: 
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 ( ) ( )

( )( )( )
( ) 2

k

k k

k

g g
s α

−
=

µ

h

�
 (6.44) 

where 
( ) ( ) ( )1 /
k

m k mα = + +  with m  a fixed positive integer and g�  an upper-bound 

on the optimum dual. Any primal-feasible solution of the first problem is an upper-bound, 

but not all solutions are primal-feasible, and therefore g�  may be updated infrequently. In 

§3.4, the CSB is computed either by solving the primal problem with an interior point 

method or by solving the dual problem using the GPM to minimize the Lagrangian and 

the subgradient method to maximize the dual function. We observed that in our 

simulations solving the primal problem was faster, and this seems to be due to a slow 

convergence of the subgradient method. 

 

B.4 The non-linear Gauss-Seidel method 

This algorithm is classified in section 2.7 of [B99] as a Block Coordinate Descent 

method. It applies to problems of the form 

 ( )1 2min , , , no
∈v

v v v
V

…  (6.45) 

where ( )1 2, , , nv v v v� …  and V  is a Cartesian product of convex sets: 

1 2 n
= × × ×V
V V V� . 

It is an iterative algorithm which optimizes each variable one after the other in a cyclic 

order: 

 
( ) ( ) ( ) ( ) ( )( )1 1 1

1 1 1arg min , , , , , ,
i

k k k k k

i i i n
o

+ + +

− +
∈

=
ξ

v v v ξ v v
V

… …  (6.46) 

If the optimization with respect to each independent variable 
i

v  has a unique solution, 

and if the problem (6.45) has a unique solution (e.g. if it is convex) then the Gauss-Seidel 

algorithm converges to the optimum. In case the problem is non-convex, there is a unique 

minimum to the problem (6.45) and it is provided by the Gauss-Seidel algorithm if some 

contraction conditions are verified for the mapping ( )T oγ= − ∇v v  where γ  is a 

positive scalar. These conditions are mentioned in [PC06] which refers to [BT89] for 

details. It is interesting to apply the Gauss-Seidel algorithm when the optimization w.r.t. 

each variable is easy to solve. One well-known example application is Yu’s iterative 

waterfilling algorithm for the MIMO MAC [YRBC04]. Example applications of the 

Gauss-Seidel algorithm in this thesis can be found in §4.2.3.3 and §4.3.3. 
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Appendix C Proofs of Propositions  

C.1 Proof of Proposition 2.1 

During the first slot, S transmits ,1dω  and rω  via superposition coding as follows: 

 ( ) ( ) ( )(1) (1) (1) (1) (1)
,1 1S d S rS P Pα ω α ω= + −x u v  (6.47) 

where [ ](1) 0;1α ∈  is the fraction of source transmit power allocated to the transmission 

of the direct message during the first slot. 

The relay first decodes ,1dω  from 
(1)

R
y  and removes the contribution depending on this 

message from its observation before decoding rω . The rates ,1dR  and rR  are therefore 

constrained by: 

 
( )

(1)
1

,1
(1)

1

log 1
1 1

dR t
α γ

α γ

 
≤ + 

+ − 
 (6.48) 

 ( )( )(1)
1log 1 1rR t α γ≤ + −  (6.49) 

Moreover, D can decode ,1dω  if  

 
( )

(1)
0

,1
(1)

0

log 1
1 1

dR t
α γ

α γ

 
≤ + 

+ − 
 (6.50) 

During the second slot, the relayed message rω  is used by S and R to cooperate while S 

sends the second direct message ,2dω  via superposition coding: 

 ( ) ( )( ) ( )
*
0(2) (2) (2) 2 (2)

,2

0

1S d S rS P Pα ω α ω= + −
h

x u v
h

 (6.51) 

 ( )
*
2(2) (2)

2

R rR P ω=
h

x v
h

 (6.52) 

where [ ](2) 0;1α ∈  is the fraction of source transmit power allocated to the transmission 

of the direct message during the second slot. 

The destination starts by decoding rω  from 
(1)
Dy  and 

(2)
Dy , and removes its contribution 

from the observation before decoding ,2dω  which imposes: 

 ( )( ) ( )
( )( )

2
(2)

0 2(1)
0 (2)

0

1
log 1 1 1 log 1

1
rR t t

α γ γ
α γ

α γ

 
− + ≤ + − + − + + 

 (6.53) 

 ( ) ( )(2)
,2 01 log 1dR t α γ≤ − +  (6.54) 

Note that: 
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( ) ( )

( )( ) ( )( )( )

( ) ( )

( ) ( )

(1) (1) (1) (1) (1) (1)
1 0 1 0 1 0 0 1

(1) (1) (1) (1)
1 0 0 1

(1) (1)
1 0

(1) (1)
1 0

(1) (1)
1 0

(1) (1)
1 0

1 1

1 1 1 1

1 1 1 1

log 1 log 1
1 1 1 1

t t

γ γ α γ α α γ γ α γ α α γ γ

α γ α γ α γ α γ

α γ α γ

α γ α γ

α γ α γ

α γ α γ

≥ ⇒ + − ≥ + −

⇒ + − ≥ + −

⇒ ≥
+ − + −

   
⇒ + ≥ +   

+ − + −   

 (6.55) 

Therefore if 1 0γ γ≥ , then (6.50)⇒ (6.48) and (6.48)-(6.54) give: 

 

( )( )
( )

( ) ( )

( )( ) ( )
( )( )

(1) (2)

, ,1 ,2

(1)
0(1) (2)

1 0
(1)

0

2
(2)

0 2(1)
0 (2)

0, ,

log 1 1 log 1 1 log 1 ,
1 1

1
max min log 1 1 1 log 1

1

PSC TDD r d d

A

t
B

C

R R R R

t t t

t t

t

α α

α γ
α γ α γ

α γ

α γ γ
α γ

α γ

+ +

 
+ − + + + − + 

+ − 

 
− + = + − + − + + 

+

�

�
�

�

	







�







�

	


�


�
	





�





�

( )
( ) ( )

(1)
0 (2)

0
(1)

0

log 1 1 log 1
1 1

E

D

t
α γ

α γ
α γ

 
 
 
 
 
 
 
 
 
 

  
+ + − +  + −   

 
�

�

	


�


�
	



�



�

 (6.56) 

The above expression can be simplified as follows: 

 ( )0log 1B D t γ+ = +  (6.57) 

( )
( ) ( )

( ) ( )

( ) ( )( )

(2) (2) (2)
0 0 2 0 2 (2)

0(2)
0

(2)
0 2 0 2

1 1 2 1
1 log 1 log 1

1

1 log 1 2 1

C E t t

t

α γ α γ γ α γ γ
α γ

α γ

γ γ α γ γ

 + + − + + −
 + = − + − + + 

= − + + + −

 (6.58) 

Plugging (6.57) and (6.58) into (6.56) gives: 

 

( )( )
( )

( ) ( )

( ) ( ) ( )( )
(1) (2)

(1)
0(1) (2)

1 0
(1)

0

,

(2)
0 0 2 0 2

, ,

log 1 1 log 1 1 log 1 ,
1 1

max min

log 1 1 log 1 2 1

PSC TDD
At

t t t

R

t t

α α

α γ
α γ α γ

α γ

γ γ γ α γ γ

  
+ − + + + − +  

+ −  
=  

 
 + + − + + + − 

�
	







�







�

 (6.59) 
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Comparing the expression (6.59) with the expression of , 3PDF PR  given by (2.12), the 

superposition coding increases the achievable rate if and only if the following condition is 

satisfied: 

 

( ) ( )( )
( )

( )

( )( )( )

( ) ( )( )

0(1)
1 1 1

(1)
0

(1)
1 0

(1)
1 0

(1) (1)
1 0

1 0

1 0

1 0

1 0

1
log 1 log 1 1 log log 1 0

1 1

1 1 1
log 0

1 1 1

1 1 1
1 1

1 1

A t t t t
γ

γ α γ γ
α γ

α γ γ

γ α γ

α γ α γ

γ γ

γ γ

γ γ

γ γ

+ 
≥ + ⇔ + − + − + ≥ + − 

 + − +
⇔ ≥ 

 + + − 

   
⇔ − − ≥   

+ +   

⇔ ≤
+ +

⇔ ≤

 (6.60) 

Therefore, we conclude that  

 , , 3PSC TDD PDF PR R≤  (6.61) 

 

C.2 Proof of Proposition 4.1 

The proof can be obtained as a special case of Theorem 3 and corollary 4 in 

[GDV06]. The latter considers a Gaussian source vector x  which is split into two 

(correlated) parts 1x  and 2x  and shall be reconstructed from a compressed version of 1x  

and a noisy observation of 2x . Our problem is slightly different as we are only interested 

in reconstructing 1x  and not the whole vector x , thus we do not take into account the 

distortion on 2x . As in [W78], let first consider the rate-distortion coding of the Gaussian 

vector 
(1)
Ry  with side information 

(1)
Dy  at both the encoder and the decoder. It can be 

realized by the distribution ( )(1) (1) (1)ˆ ,R R Df y y y  which is generated on Figure 52. 
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Figure 52: Rate-distortion coding of gaussian vector 
(1)
Ry  with side information 

(1)
Dy  

at the encoder and decoder 

 

Because the CKLT is a unitary transform, it preserves the quadratic distortion: 

 
2 2(1) (1) (1) (1)

22
ˆ ˆ

R R D D
E Eδ    − = −    

y y y z z y�  (6.62) 

Furthermore, a fundamental property of the CKLT is that the transformed vector 

(1)H
Rz U y�  has conditionally uncorrelated components given the side information 

(1)
Dy . 

Therefore, rate-distortion encoding can be performed separately on each component of 

the transformed vector using the same scheme as in section 3 of [W78]: first, the 

conditional expectation  [ ] ( ) 1(1) (1) (1) (1)
,

H
D R D D DE

−
=z y U R R y  is removed, then rate-

distortion coding of independent Gaussian variables is performed (section 13.3.3 in 

[CT91]), and finally the conditional expectation is added back at the destination to obtain 

the reconstructed signal ẑ  which is transformed into 
(1)ˆ Ry  by an inverse CKLT. The rate-

distortion function with side information at both the encoder and decoder is found by 

minimizing the information rate distortion function with respect to the distribution 

( )(1) (1) (1)ˆ ,R R Df y y y  for a given sum-distortion δ : 

 
( )

( )
(1) (1) (1)

(1) (1) (1)

ˆ ,

ˆ( ) min ;
R R D

R R DR D
f

r Iδ =
y y y

y y y  (6.63) 

Note that the two schemes of Figure 13 and Figure 52 result in the same input-output 

relationship. From equations (4.12)-(4.15), it is clear that the distribution is determined by 

the choice of a compression noise vector η . Let now define the vector d  as the squared 

distortion per component of the transformed vector z : 

 
2 (1)ˆ

i i i Dd E z z −
 

y�  (6.64) 

(1)

R
y HU

Ψ

A

( )
1

(1) (1) (1)

,

H

R D D D

−
−U R R y ( )

1
(1) (1) (1)

,

H

R D D D

−
U R R y

U

(1)ˆ
Ryz ẑ
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The following lines show the relationship between the compression noise η  and the 

component-wise distortion d . From (4.12) and (4.4) we can write: 

 ( ) ( ) ( )(1) (1) (1) (1) (1)ˆ ˆH H

R R R R DE  − − = − − + z z U y y A I U y y y Aψ�  (6.65) 

Then by definition of conditional covariance and since the matrix A is diagonal, inserting 

(6.65) into (6.64) gives: 

 ( )
2 21

i i i i i
d a s a η= − +  (6.66) 

Finally, replacing ia  in (6.66) by its definition given by (4.14) leads to equation (4.17): 

( )/i i i i id s sη η= + . Therefore, the distribution ( )(1) (1) (1)ˆ ,R R Df y y y  is equivalently 

determined by the choice of either η  or d . It will be shown in section 4.2.3.1 that the 

distribution which minimizes the sum-distortion in (6.63) may not be the best for our CF 

relaying problem. We therefore compute the rate required to achieve a component-wise 

distortion d : 

 

( )

( )
( )
( ) ( )

( ) ( )

( ) ( )

(1) (1) (1) (1)

( )
(1) (1) (1)

(1)

(1) (1)

( )
(1) (1) (1) (1)

( )
(1)

( )

1

ˆ( ) ;

ˆ;

ˆ;

ˆ ˆ ,

,

log log

l

R R

R R DR D

a
H H

R R D

D

D D

b

D D D D

c

D

N Nd
i i i i

i

i ii i i i

r I

I

I

H H

H H

H H

s d s d
s

s d s d=

=

=

= −

= + + − +

= + −

   
= + −   

− −   

=

∑ ∑

d y y y

U y U y y

z z y

z y z y z

Az Aψ Ky y Az + Aψ Ky z y

z ψ y ψ

�

( )
1 1

og /
R RN N

i i i

i i

s d r
= =

∑ ∑�

 (6.67) 

where  

( )a  follows from equation (13) in [NM93], which gives the entropy of the product of a 

proper complex Gaussian vector x  by a non-singular matrix M : 

 ( ) ( ) ( )2log detH H= +Mx x M  (6.68). 

( )b  is straightforward from equation (4.12) 

( )c  stems from (6.68) and the fact that the entropy of a known variable is zero. 
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( )d  from the fact that the components of z are conditionally independent given 
(1)
Dy  by 

definition of the CKLT. 

As in [W78], let denote by *( )r d  the rate with side information at the decoder only. The 

equality between *( )r d  and ( )R Dr d  follows from section 3 of [W78] in which the 

equivalence between Fig. 1 and Fig. 2 and the fact that the following Markov chain holds: 

 
D R

→ →y y v  (6.69) 

(where v  is defined on Figure 13) lead to: 

 ( ) ( )ˆ; ;
R D R R D

I I=y v y y y y  (6.70) 

Finally, the rate-distortion function ( )r δ∗
 is obtained by minimizing the rate under total 

squared distortion δ . This constrained problem is convex and the solution is given by the 

well-known (section 13.3.3 in [CT91]) reverse waterfilling algorithm.  

 

C.3 Proof of Proposition 4.3 

Applying the chain rule for mutual information to (4.27) gives:  

 ( ) ( ) ( )
0,0,

(1) (1) (1) (1) (1) (1) (1) (1)

0 ; , ; ; |

rd

S R D S D S R D

R R

R I I I= = +x y y x y x y y

� �

� �
	
�
� 	

�

�

 (6.71) 

The first term 0,dR  is equal to ( )(1)

0,SR HC . The second term 0,rR  can be computed as 

follows: 

 

( ) ( )
( )

( ) ( )
( ) ( )

( )

( ) ( )( )

(1) (1) (1) (1) (1)

0,

(1) (1) (1) (1)

(1) (1)

2

2
1

| | ,

| |

log diag log diag

log diag log diag

log

R

R

r R D R S D

a

R D R S

H H

R D R S

b
H H

N

N

i i

i i

R H H

H H

s

σ

η

σ η=

= + − +

= + − +

= + − +

= + − +

 +
=  

+ 
∑

y Uψ y y Uψ x y

y Uψ y y Uψ x

R U η U R U η U

U s η U U I η U

 (6.72) 

where ( )a  comes from the fact that 
(1)

D
y  is a noisy version of 

(1)

0 S
H x and ( )b  from the fact 

that white thermal noise was assumed in our signal model. 

 The maximization of ,0 r
R  w.r.t. η  can now be performed. From (4.16) we have 

( )/ 2 1ir

i i
sη = − , which can be inserted into (6.72), resulting in the following equivalent 

problem: 
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 (6.73) 

It can be checked that this objective is concave in r , and since the inequality constraints 

are affine the problem is convex is in standard form. The KKT conditions yield after a 

few simple calculations the solution (4.31). 

 

C.4 Proof of Proposition 4.4 

Let parameterize the sum-rate side of the achievable rate region (4.36), denoting by 

[ ]0;1α ∈  the fraction of the time during which 1ω  is decoded first, assuming that the 

rest of the time 2ω  is decoded first. In the single-antenna case the channel matrices are 

complex scalar denoted by 0H , 1H  and 2H  which are normalized in this proof such that 

2 1σ = . The achievable rates read as: 

 ( ) ( )
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22

1 22
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log 1 1 log 1
1
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H P
R H P

H P
α α

 
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 (6.74) 
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 

 (6.77) 

From (4.3) and (6.74)-(6.77), it can be shown (after tedious calculations) that:  

 

( ) ( )

( ) ( )
1 1

1
1 1

1 12 2 1 1 1 0
t R t R

CF t t
R R

tη
α α

−
− −

− ∂ ∂
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 (6.78)  

Since from (6.74) we have 1 / 0 R α∂ ∂ ≤ , therefore / 0
CF

R α∂ ∂ ≥ . In general, inequality 

(6.78) is strict and 1γ =  is optimum, Q.E.D.  

 

C.5 Proof of Proposition 4.8 
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Equations (4.56) and (4.58) are straightforward. We show that (4.57) is equivalent to 

(4.39) in Proposition 4.5 under a sum-rate constraint. Indeed, we have: 

 
{ } { }( ) { } { } { }( )

{ } { }( )
0 01, , \ 1, , \1 1

01 1
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i iM M

M M

i i

M I I

I

∀ ⊆ ≤

≤

y y y y y y y y

y y y

G G G G
G … ……

 (6.79) 

Since equality holds in (6.79) when { }1, , M=G … , the constraint (4.39) is equivalent to 

(6.79) under a backhaul sum-rate constraint. Therefore the rate of Proposition 4.8 is 

achievable by the DCF-JD strategy of Proposition 4.5. It remains to check whether it is 

also achievable by DCF-SD strategy of Proposition 4.6. For a given permutation π , the 

minimum rate required to compress the ith BS observation is equal to 

( ) ( ) ( ){ }( )1

0 1
ˆ ˆ; ,

i

i i jI π π π

−
y y y y . Therefore the minimum sum-rate is: 
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 (6.80) 

where ( )a  comes from the Markov chain relationship (4.44) and ( )b  from the Chain 

rule. Equation (6.80) is equivalent to (4.57) which concludes the proof.  



 

 

192 

Appendix D EESM model for cooperative links 

In this annex we provide details on error prediction for the cooperative DF strategies of 

§5.2.2 (cooperative IR) and §5.2.3 (superposition coding). For cooperative IR, we need to 

predict the error rate for an equivalent code rate formed by the combined transmission by 

the source and relay. Therefore, we compute by simulations EESM parameters for code 

rates in the range 1/3 to 5/6 with a granularity thin enough to allow the prediction for any 

code rate by linear interpolation of the tabulated code rates. The asumptions are the 

following: 

• Data block size of 120B 

• PUSC subchannel to subcarrier mapping 

• Code rates: 1/3, 2/5, ½, ¾, 5/6 

• Channel: 40 independent snapshots of SCME typical urban channel [B05]. 

• EESM beta factor optimized to minimize the standard deviation of ( )effγ β at 

target BLER of 5% 

• No channel estimation error 

Link simulation results plotted on Figure 53 illustrate the BLER prediction performance 

of EESM in the non-cooperative case. The code rate determines the color of the curve. 

Solid line curve represents the AWGN channel performance, whereas the performance on 

actual channel snapshots is represented by clouds of points at values of BLER 

logarithmically spaced between 100% and 1%. 
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Figure 53: BLER vs EESM SNReff curves on AWGN and Actual Channel snapshots 

for code rates 1/3 to 5/6 and constellations QPSK, 16QAM and 64QAM.  

 

On Table 2, the error prediction performance of EESM corresponding to Figure 53 is 

summarized. As mentioned before, a look-up table is generated for each MCS. For a 

given channel snapshot, the prediction error (measured in dB) is the difference between 

the actual SNR required to meet the target PER and the predicted SNR. The Root Mean 

Squared Error of the predictor which is provided in Table 2 gives an idea of the SNR 

margin that is to be taken by the MCS selection algorithm to avoid a bad MCS selection. 

Typically, twice the RMSE is enough to minimize the bad MCS selection event. It means 

that in the worse case, the throughput performance is degraded by twice the RMSE. 

However, the impact on the average throughput is lower than the worst case degradation. 

The RMSE figures of Table 2 confirm that EESM can predict the throughput envelope 

with an accuracy better than 0.2 dB. 



 

 

194 

 

Modulation Code 

Rate 

EESM 

Beta 

EESM RMSE 

(dB) 

QPSK 1/3 1.58 0.02 

QPSK 2/5 1.58 0.02 

QPSK 1/2 1.58 0.02 

QPSK 3/4 1.74 0.06 

QPSK 5/6 1.74 0.08 

16QAM 1/3 3.98 0.05 

16QAM 2/5 4.57 0.04 

16QAM 1/2 5.01 0.06 

16QAM 3/4 7.94 0.10 

16QAM 5/6 8.32 0.13 

64QAM 1/3 19.95 0.08 

64QAM 2/5 15.85 0.07 

64QAM 1/2 16.60 0.08 

64QAM 3/4 28.84 0.12 

64QAM 5/6 33.11 0.12 

Table 2: Error Prediction performance of EESM 

We now evaluate the error prediction accuracy of EESM for cooperative links. The 

following techniques used in cooperative coding strategies require specific study: 

• Reliability combining of packets with partial repetition of coded bits, different 

constellation and large SINR difference  

• Superposition coding 

The EESM modeling of superposition coding is studied in [FIR07], and it is concluded 

that the EESM can be computed by assuming a Gaussian-distributed interferer and 

modifying the SINRs for each sub-carrier accordingly. We will focus on the first bullet 

point. In [CSL06], a method to compute the exponential effective SNR is proposed for 

HARQ involving incremental redundancy with partial retransmission of coded bits, and 

possibly a change of constellation by means of a demapping penalty [RGC02]. The 

method originally proposed in [CSL06] computes the effective SNR by considering the 

channel SINR for all the coded bits over all the retransmissions. When a coded bit is 
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repeated, the SINRs add-up. The beta parameter must be selected based on the equivalent 

code rate. The problem with this method is that an SINR must be stored for each coded 

bit. Therefore, [CSL06] proposes a recursive formula that replaces the SINR for the 

coded bits of all previous transmissions by a single effective SNR value. Such 

simplification completely removes the need for storage, but reduces the prediction 

accuracy. Finally, binning is proposed as a trade-off between the recursive and the full-

accuracy methods. We want to check if the accuracy of this recursive method is enough 

for our objective. 

For EESM, the recursive formula for computing the effective SNR at the kth transmission 

attempt is the following: 

 
1

,11

1

1
log exp

i

eff

i UU

γ
γ β

β∈

  
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∑ ∑  (6.82) 

where 
k

U  is the set of received coded bits at the kth transmission attempt and ,i k
I =1 if 

the ith coded bit of the kth transmission is a repetition of a previously transmitted coded 

bit. 

Formula (6.82) assumes that the same constellation was used in all transmissions. If the 

constellation is changed, then a reference constellation can be chosen, for instance QPSK, 

and the β  shall be taken for the equivalent code rate of the reference constellation. A 

demapping penalty is added to 
1k

effγ −
 and ,i k

γ  that corresponds to the difference in dB 

between the BLER vs. SNR curves of the M-QAM and reference QPSK. In the following 

we assumed demapping penalties of 5dB and 10dB respectively for 16QAM and 

64QAM: 

 

( ),16 5

( ,64 ) 10

(16 ,64 ) 5

P QPSK QAM dB

P QPSK QAM dB

P QAM QAM dB

≈

≈

≈

 (6.83) 
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Figure 54: Distribution of target SNR prediction errors for recursive (top) and non-

recursive (bottom) EESM. S-R: 64QAM, R=5/6 R-D: 64QAM, R=1/2, Cooperative 

IR v1. 
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Figure 55: Distribution of target SNR prediction errors for recursive (top) and non-

recursive (bottom) EESM. S-R: 16QAM, R=3/4 R-D: 16QAM, R=3/4, Cooperative 

IR v1. 
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Figure 56 Distribution of target SNR prediction errors for recursive (top) and non-

recursive (bottom) EESM. BS-RS: 16QAM, R=3/4 RS-MS: 64QAM, R=1/2, 

Cooperative IR v1. 

From the above simulation results, we conclude that we should select the non-recursive 

formula to compute the EESM for our simulations of cooperative IR, in order to benefit 

from the best error prediction accuracy. Note that whatever the formula chosen, in some 

cases a large prediction error may occur. However, these events -which occur at low 

SNR- correspond to a positive target SNR prediction error, which will only result in a 

conservative selection of the MCS, but not to a fatal misadaptation. Therefore the impact 

on throughput should be low (a few percent). 
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